Preliminary Fuel Cycle Analysis of the -UB2 Composite Fuels in Pressurized Water Reactors

Zeyun Wu[†] and Cihang Lu^{*}

Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond VA 23284

†Corresponding author: zwu@ycu.edu

doi.org/10.13182/T126-38212

INTRODUCTION

Burnable absorbers (BA) are being commonly employed in operating pressurized water reactor (PWR) to hold down the excess reactivity in the early stage of the fuel cycles. Due to the large ${}^{10}\mathrm{B}(\mathrm{n},\alpha)^{7}\mathrm{Li}$ cross section in the thermal range, boron is a common BA employed in forms of soluble boric acid dissolved in the coolant, the concentration of which keeps being adjusted to keep the reactor critical. The Wet Annular Burnable Absorber (WABA) [1] and the Integral Fuel Burnable Absorber (IFBA) [2] are two alternative BA forms invented by Westinghouse. The WABA consists of annular pellets of alumina-boron carbide (Al₂O₃-B₄C) contained within two concentric Zircaloy-4 [3] tubes. WABA has one drawback that the BA rods displace fuel rods from the fuel assembly, which results in reduced heavy metal (HM) loading and shorter fuel cycles. This defect can be circumvented via the use of the IFBA, which consists of coatings of thin layers of zirconium diboride (ZrB₂) over the outer surfaces of the conventional UO₂ fuel pellets. However, the IFBA has its own limitations. For example, while enormous efforts have been made to enhance the thermal conductivity of the nuclear fuel in the aftermath of the 2011 Fukushima disaster, adding a coating material to the surface of the fuel rod inevitability worsens the heat transfer between the fuel and the coolant, which results in a higher fuel centerline temperature. Also, the coating may lead to early burn out of the BA and induce undesirable reactivity peaks [4], which also increases the fuel temperature.

In the light of the above limitations, several novel composite fuels with uranium diboride (UB₂) as the secondary phase have been proposed to improve both the safety and the economic performances of the PWR [5, 6]. Three of these composite fuels, namely the UO₂-UB₂, U₃Si₂-UB₂, and UN-UB₂, were investigated in this work. U₃Si₂, UN, and UB₂, as the primary ingredients of the composite fuels, all have enhanced HM loadings (9.68 g-U/cm³ for UO₂, 11.68 g-U/cm³ for UB₂, 11.3 U/cm³ for U₃Si₂, and 13.35 g-U/cm³ for UN). Additional advantages of these composite fuels include:

- These composite fuels have higher thermal conductivities than the conventional UO_2 fuel, which limits the fuel temperature.
- By appropriately adjusting the $^{10}B/^{11}B$ ratio, the -UB₂ fuels also function as the BA. The more distributed BA in fuel rods,

instead of the several dedicated BA rods, decreases the power peaking factor and therefore the peak fuel temperature.

- The use of these composite fuels avoids the potential early burnout of the BA coatings.

All the above merits of the $-UB_2$ composite fuels undoubtably improve the safety of a PWR.

This paper analyzed, on the other hand, the economic viability of these -UB₂ composite fuels via fuel cycle analyses, as a longer fuel cycle length implies less frequent refueling outages, which leads to a higher availability and more profit. While UO₂-UB₂ and U₃Si₂-UB₂ have been recently fabricated in the laboratory environment, no production of the UN-UB₂ composite has been reported. This work therefore also makes suggestions for the focus of potential future experiments on UN-UB₂.

COMPUTTATIONAL MODELS

PWR Fuel Assembly

The Westinghouse's AP-1000 reactor was considered as the reference design in this work, and the 17 x 17 fuel assembly was modeled according to its specifications [7]. Important parameters of the fuel assembly are summarized in TABLE I. The mass density of the Zircaloy-4 cladding was 5.78 g/cm³ [8]. The coolant with a boron concentration of 500 ppm had a mass density of 0.719 g/cm³ [9]. The stochastic neutronics tool Serpent [10] was used for the modeling work, and the ENDF/B-VII.0 library was employed. The fuel materials were modeled at 900 K, while the non-fuel materials were modeled at 600 K. The 2-D fuel assembly model is shown in Fig. 1.

TABLE I. Specifications of fuel assembly.

Parameter	Value
Array size (-)	17 x 17
Number of fuel rods (-)	264
Number of guide/instrument tubes (-)	25
Power density (MW/MTU)	40.2
Rod pitch (cm)	1.26
Assembly pitch (cm)	21.522
Cladding outside radius (cm)	0.475
Gas gap outside radius (cm)	0.4178
Pellet outside radius (cm)	0.4096
Guide/instrument tube outside radius (cm)	0.6121
Guide/instrument tube inside radius (cm)	0.5715

^{*} Current address: Nuclear Science & Technology Department, Brookhaven National Laboratory (clu@bnl.gov)

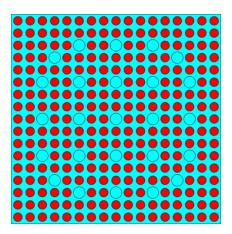


Fig. 1. The 2-D Serpent model of the 17 x 17 fuel assembly.

Loading patterns with 0, 8, 16, 32, 48, 64, 80, 104, 128, and 156 IFBA rods are known to exist for a Westinghouse 17 × 17 assembly [8]. We considered the bounding cases and compared the fuel cycle performance of the three composite fuels with conventional UO₂ assemblies with 0 and 156 IFBA rods. The loading pattern for the 156 IFBA rods is shown in Fig. 2. Natural boron was considered for both the soluble boric acid and the ZrB₂ coating of the IFBA rods. We assumed 1.57 mg/inch of ¹⁰B in the IFBA rods [8], where the thickness of the ZrB₂ coating was 0.000508 cm [11]. An initial ²³⁵U enrichment of 3.4 wt.%, which is one of the typical initial enrichments in the AP-100 design, was assumed for all the fuels in this study, including the conventional UO₂ fuel and the three composite fuels.

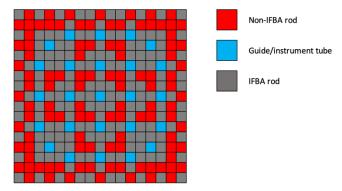


Fig. 2. Loading pattern of the 156 IFBA rods.

The UO2-UB2 Composite

The UO₂-UB₂ composites, with UB₂ phase fractions of 5 wt.%, 15 wt.%, and 30 wt.%, were recently fabricated at Las Alamos National Laboratory [5]. The composites were fabricated to high densities (> 95% theoretical density) via spark plasma sintering (SPS). The use of the UO₂ as the primary phase aids from a regulatory and fabrication infrastructure standpoint, while the incorporation of the UB₂ as the secondary phase improves both the overall thermal conductivity and fissile density [5]. It is pointed out that UO₂-UB₄ was also fabricated. However, because of the

significantly lower HM density of UB₄ (13.35 g-U/cm³), UO₂-UB₄ was not considered in this work.

The UO₂-UB₂ composites were modeled with 30 wt.% of UB₂ in this work with 95% theoretical densities. The ¹⁰B concentration was varied to study its impact on the fuel cycle performance. At room temperature, the theoretical density of UO₂ and UB₂ are 10.97 g/cm³ and 12.7 g/cm³, respectively [12]. We assumed this ratio in theoretical mass density unchanged at 900 K and calculated the theoretical density of UB₂ to be 11.84 g/cm³, as UO₂ has a theoretical density of 10.766 g/cm³ at 900 K [13].

The U₃Si₂-UB₂ Composite

The U₃Si₂-UB₂ composite, with 0 - 100% UB₂ phase fractions, were recently fabricated in the University of Manchester via arc melting, followed by cold pressing and sintering. The density of the composite was measured to be similar to the reference U₃Si₂ material [6]. Unlike the UO₂-UB₂ composites, the U₃Si₂-UB₂ composite was not expected to increase the fuel cycle length of U₃Si₂, viewing the comparable HM densities of both materials. The UB₂ was added as the secondary phase to U₃Si₂ such that the later can be less reactant to the high-pressure steam. It was found that the addition of 10 wt.% of UB₂ to U₃Si₂ increases the onset temperature of the steam reaction by around 100 K, and the addition of 50 wt. % UB₂ maintains this increase [6].

The U_3Si_2 -UB₂ composite were modeled with 30 wt.% of UB₂ in this work with 95% theoretical densities. The ^{10}B concentration was varied to study its impact on the fuel cycle performance. At room temperature, the theoretical density of U_3Si_2 is 12.2 g/cm³ [14]. The theoretical density of U_3Si_2 was calculated to be 11.37 g/cm³ at 900 K in the same way as the UB₂.

The UN-UB₂ Composite

No fabrication of the UN-UB₂ composite has been reported yet. Similar to the U₃Si₂-UB₂ composite, the UB₂ is a desirable secondary phase to UN to mitigate its reaction with high-pressure steam. One uniqueness of the UN-UB₂ composite is that natural nitrogen contains 99.6 at.% of ¹⁴N, which has a relatively strong neutron absorption cross-section for the ¹⁴N(n,p)¹⁴C reaction in the thermal energy range [9].

The UN-UB₂ composite were modeled with 30 wt.% of UB₂ in this work with 95% theoretical densities. Both the 10 B and 14 N concentrations were varied to study their impact on the fuel cycle performance. The theoretical density of UN is 14.13 g/cm³ at 900 K [15].

RESULTS

The impact of the composite fuels on the infinite multiplication factor and the fuel cycle length, expressed in effective full power days (EFPD), is shown in Fig. 3 in comparison with the bounding reference 0- and 156-IFBA-rods cases. All the three composite fuels were able to increase the fuel cycle length of the 0-IFBA-rods assembly when

employing 100% enriched ¹¹B and ¹⁵N, thanks to the enhanced HM loadings, as summarized in TABLE II. It is noted that the HM loading in TABLE II. is per assembly with a thickness of 1 cm. Fig. 3 also demonstrated that by appropriately adjusting the ¹⁰B concentration of the composite fuels, they are capable to function similarly to the 156-IFBA-rods assemblies for the holding down of the initial excess reactivity.

Fig. 3. Comparison of the k_{∞} as a function of EFPD of the various composite fuels.

TABLE II. Summary of fuel cycle length and HM loadings.

Fuel type	EFPD	+	HM loading (g)	+
0-IFBA	556	-	1254	-
UO_2 - UB_2	597	7%	1323	5%
U_3Si_2 - UB_2	675	21%	1479	18%
$UN-UB_2$	782	41%	1680	34%

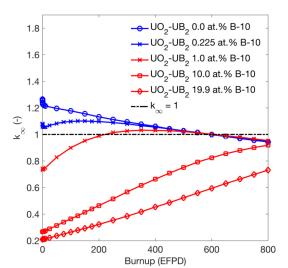


Fig. 4. Impact of ${}^{10}\mathrm{B}$ concentration on k_{∞} for UO₂-UB₂.

Although all these composite fuels, with appropriate ¹⁰B concentrations, can help hold down the excess reactivity at the early stage of the cycle, the penalty on the initial reactivity may soon become unacceptable with an increasing ¹⁰B concentrations. The impact of the ¹⁰B concentration on the infinite multiplication factor is shown in Fig. 4-6 respectively for UO₂-UB₂, U₃Si₂-UB₂, and UN-UB₂ fuels.

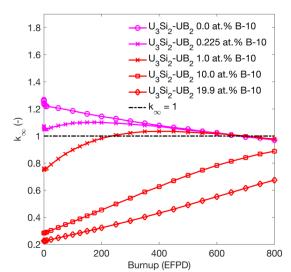


Fig. 5. Impact of ${}^{10}\text{B}$ concentration on k_{∞} for U₃Si₂-UB₂.

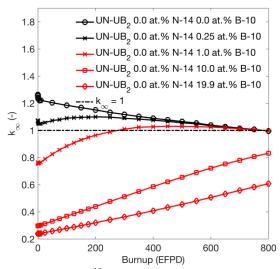


Fig. 6. Impact of ${}^{10}\mathrm{B}$ concentration on k_{∞} for UN-UB₂.

For all the three composite fuels, a $^{10}\mathrm{B}$ concentration of a few 0.1 at.% will be reasonable, while the employment of natural boron (which has a $^{10}\mathrm{B}$ concentration of a 19.9 at.%) would be impractical. The enrichment of $^{11}\mathrm{B}$ to a large extent (~99.9 at.%) may be costly and not worth the increased fuel cycle length brought by the employment of the -UB₂ composite fuels.

The impact of the ¹⁴N concentration of UN-UB₂ on the infinite multiplication factor, as shown in Fig. 7, is less significant compared to ¹⁰B. This is because of the relatively smaller neutron absorption cross section of ¹⁴N in the thermal

range [16], as shown in Fig. 8. However, when natural nitrogen (which has a ¹⁴N concentration of a 99.6 at.%) is employed, the increase in the fuel cycle length brought by the enhanced HM loading of UN is canceled out.

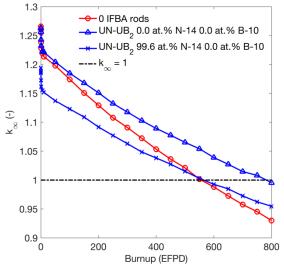


Fig. 7. Impact of ¹⁴N concentration on k_{∞} for UN-UB₂.

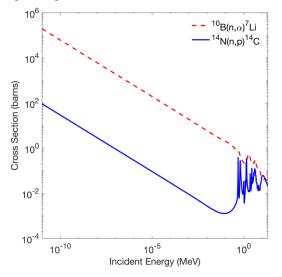


Fig. 8. Comparison of ¹⁴N and ¹⁰B absorption cross section.

CONCLUSIONS

All the calculations in this work were performed by assuming 30 wt.% of the UB₂ phase in the composite fuels. The results indicate the impact of the ¹⁰B concentration on the reactivity decreases with a smaller amount of UB₂. However, a significant amount of UB₂ is required in the UO₂-UB₂ composite to achieve a higher HM loading for an extended fuel cycle length. In contrast, UB₂ is added to U₃Si₂ and UN primarily to make them less reactant with high-pressure steam, rather than to increase the HM loading. Therefore, in future work, the minimum amount of UB₂ required to adequately mitigate the UN-steam reaction should be experimentally determined.

REFERENCES

- Westinghouse Electric Company LLC, "Nuclear fuel -Wet Annular Burnable Absorber (WABA) assembly," NFCM-0016 (2017).
- 2. Westinghouse Electric Company LLC, "Nuclear fuel Integral Fuel Burnable Absorber (IFBA) fuel cycles and IFBA/Gad hybrid fuel cycles," NFCM-0015 (2018).
- 3. C. WHITMARSH, "Review of Zircaloy-2 and Zircaloy-4 properties relevant to N.S. Savannah," (1962)
- F. FRANCESCHINI and B. PETROVIC, "Fuel with advanced burnable absorbers design for the IRIS reactor core: combined Erbia and IFBA," *Annals of Nuclear Energy*, 36, 1201–1207 (2009).
- 5. KARDOULAKI et al., "Fabrication and thermophysical properties of UO₂-UB₂ and UO₂-UB₄ composites sintered via spark plasma sintering," *Journal of Nuclear Materials*, **544**, 152690 (2021).
- 6. J. TURNER and T. ABRAM, "Steam performance of UB₂/U₃Si₂ composite fuel pellets, compared to U₃Si₂ reference behaviour," *Journal of Nuclear Materials*, **529**, 151919 (2020).
- 7. Westinghouse Electric Company LLC, "AP1000 European Design Control Document," (2009).
- C. SANDERS and J. WAGNER, "Study of the effect of Integral Burnable Absorbers for PWR burnup credit," NUREG/CR-6760, ORNL/TM-2000/321 (2002).
- 9. N. BROWN et al., "Neutronic performance of uranium nitride composite fuels in a PWR," *Nuclear Engineering and Design*, **275**, 393–407 (2014).
- 10. J. LEPPANEN, "The Serpent Monte Carlo code: status, development and applications in 2013," *Annals of Nuclear Energy*, **82**, 142–150 (2015).
- 11. F. FRANCESCHINI et al., "Westinghouse VERA test stand zero power physics test simulations for the AP1000 PWR," CASL-U-2014-0012-000 (2014).
- 12. W. HAYNES, et al., CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 97th Edition, CRC Press (2017).
- S. POPOV et al., "Thermophysical properties of MOX and UO2 fuels including the effects of irradiation," ORNL/TM-2000/351 (2000).
- 14. K. METZGER et al., "Model of U₃Si₂ fuel system using BISON fuel code," INL/CON-13-30445 (2014).
- 15. S. L. HAYES et al., "Material property correlations for uranium mononitride," *Journal of Nuclear Materials*, **171**, 262-170 (1990).
- 16. D. B. BROWN et al., "ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELOproject cross sections, new standards and thermal scattering data," *Nuclear Data Sheets*, 148, 1-142 (2018).