A Physics-Informed Neural Network Approach for Reliable Surrogate Modelling for PWR LOOP Accidents

Fabiano Thulu¹, Zeyun Wu¹ and Yunfei Zhao²

¹Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA ²Department of Mechanical Engineering,

University of Maryland, College Park, MD

2025 ANS Winter Conference & Expo, AI/ML Applications in Thermal Hydraulics Wednesday, November 12th, 2025

Background and Motivation

Loss-of-offsite Power (LOOP) in PWR

Defined as "The loss of all AC power from the electrical grid to the plant safety buses (NUREG-2122)

This leads to immediate cessation of the **Primary Coolant Pumps** and the **Main Feedwater Pumps**.

Loss of flow and heat removal capacity triggers rapid temperature and pressure changes.

Contributes 26 % to the core damage frequency (CDF) of Gen II reactors.

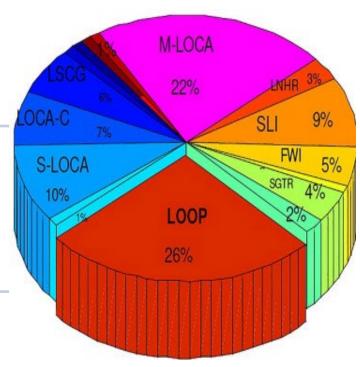
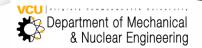


Figure 1. Initiating events contribution into total CDF of NPP. (Mossoud et at., 2018)



The Challenge of Real-Time Safety Analysis

LOOP is one of the leading accident reported by NRC in which 33% Switchyard-related events, and 34 % from weather related events between 2009-2023 (Johnson and Ma, 2024).

High-fidelity T/H codes (e.g. MELCOR or RELAP) are too slow for real-time applications (Wang et al., 2024; Antonello et al., 2023).

We need models that is 1000X faster, and provide physically reliable predictions (Zhang et al., 2024; Prantikos et al., 2023).

Develop a surrogate model capable of millisecond predictions of safety-critical parameters (T_f , P_p and T_C) during LOOP accidents.

Research Objectives and Overview

Surrogate Landscape

Advantages:

- 1. High-speed ML/DNN.
- Less expensive and open source.

Challenges:

- 1. Prone to non-conservative errors.
- 2. Physically implausible predictions.
- 3. Remain too slow for real-time Digital Twin application.

Gap:

 The need for models that combines speed of data driven models with the physical reliability and consistency.

Solution:

 Use of governing physics equations to constrain the neural network's training.

Develop a model using physics learning, over purely data learning

Validate performance against purely data driven model (DNN) to quantify the benefit of physical constraints

PINN will deliver the needed speed while eliminating the nonconservative errors and ensuring physical consistency

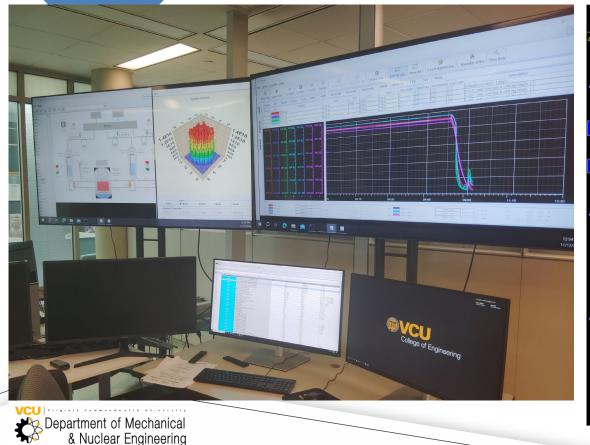
Research Approach and Procedure

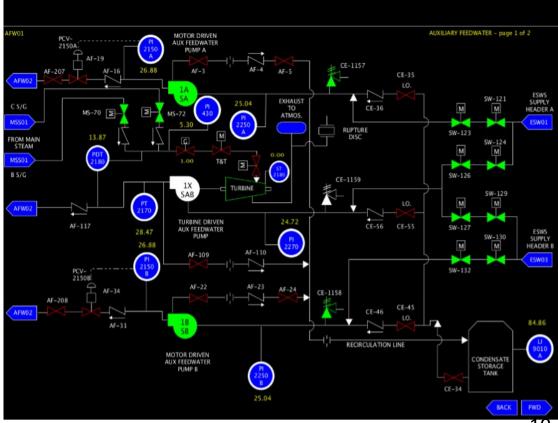
Research Approach and Procedure

• Running 36 PWR LOOP accidents with Simulator.

Task I

• Each varying in initial condition, and system configuration.





Research Approach and Procedure

Task II

- Develop 3 Deep Neural Networks (DNN) architectures (Deep-MLP, TCN and ResNet-MLP).
- Training and Validation.

Task III

- Develop 3 Physics-Informed Neural Networks (PINNs) variants (Transfer Learning PINN, ResNet Multi-Head and Neural_ODE).
- Training and Validation.

Task IV

Model evaluations and comparisons

DNN Surrogate Architectures

Table 1: DNN Models

Model	Architecture			
A	MLP (Baseline feed-	Feed-forward benchmark."		
	forward)			
В	Temporal Convolution	Uses convolutional blocks designed to capture the temporal		
	Network (TCN)	dependencies and inertia of the reactor system, making it		
		highly effective for sequence data.		
С	ResNet-MLP hybrid	Leverage residual connections, ensuring training stability.		

Loss Function

$$L_{total} = \frac{1}{N} \sum_{i=1}^{N} \left[\left(\dot{T}_{f,i} - T_{f,i} \right)^{2} + \left(\dot{T}_{c,i} - T_{c,i} \right)^{2} + \left(\dot{P}_{p,i} - P_{p,i} \right)^{2} \right]$$

Eq ...1

PINN Surrogate Architectures

Table 2: PINN Models



Model	Network Architecture	
A	Baseline PINN	A standard fully-connected network constrained by the L_Physics term
В	ResNet Multi-Head	Uses a Shared-Encoder layer, which forces the network to learn a single common latent physical representation of the reactor state.
C	Neural_ODE PINN	Doesn't directly predict, but rather parameterizes the time derivative . The predictions are then generated by running an RK4 (Runge-Kutta)
Department of Mec	harical neering	integrator

PINN Approach (Physics Loss - "r")

Loss Function

$$L_{total} = \frac{1}{N} \sum_{i=1}^{N} \left[\left(\dot{T}_{f,i} - T_{f,i} \right)^2 + \left(\dot{T}_{c,i} - T_{c,i} \right)^2 + \left(\dot{P}_{p,i} - P_{p,i} \right)^2 \right] + \left[\lambda_{phys} \frac{1}{N} \sum_{i=1}^{N} \left[r_{1,i}^2 + r_{2,i}^2 + r_{3,i}^2 \right] \right]$$

$$\lambda_{phys} \frac{1}{N} \sum_{i=1}^{N} [r_{1,i}^2 + r_{2,i}^2 + r_{3,i}^2]$$

Eq ...2

Fuel Energy Balance

$$r_1 = \rho_f c_{p,f} V_f \frac{dT_f}{dt} - Q_{gen}(t) + U_{fc} A_{fc} (T_f - T_c)$$

Eq ...3

Coolant Energy Balance

$$r_2 = \rho_f c_{p,c} V_c \frac{dT_c}{dt} - U_{fc} A_{fc} \left(T_f - T_c \right) + Q_{AFWS}(t) + Q_{loss}(t)$$

Eq ...4

Simplified Pressure Evolution

$$r_3 = \frac{dP_p}{dt} - K_p \frac{dT_c}{dt}$$

Eq ...5

Results

Speed & Statistical Baseline

 \succ Both DNN and PINN models achieve prediction time in the millisecond range ($\sim 10~ms$)

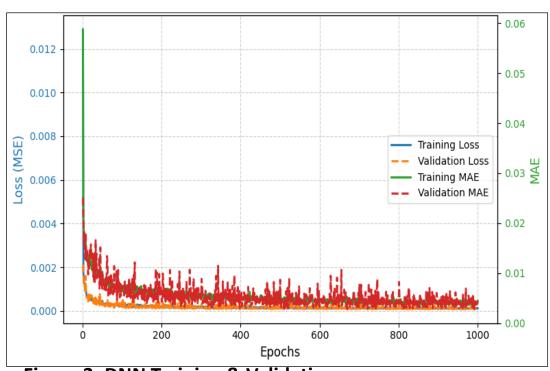


Figure 2: DNN Training & Validation

- $ightharpoonup R^2 \approx$ 0.7 (acceptable fit) : NMEA \approx 5.51
- Higher MaxAE and localized losses

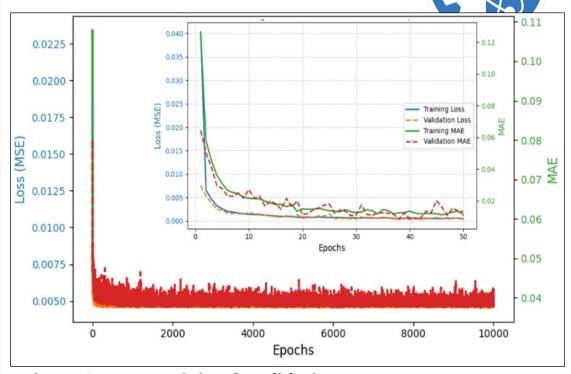
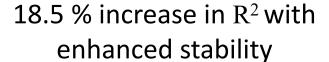


Figure 3: PINN Training & Validation

- $ightharpoonup R^2 pprox 0.83$ (better fit) : NMEA ≈ 7.94
- Lower MaxAE and reduced localized losses.



Coolant Temperature Evolvement

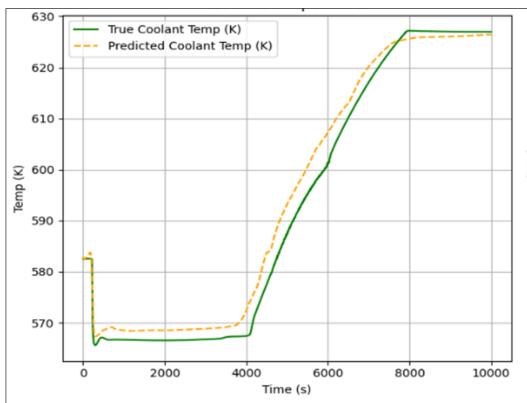


Figure 4: DNN Coolant Temp Trends

- Non- Conservative Predictions
- Overshooting

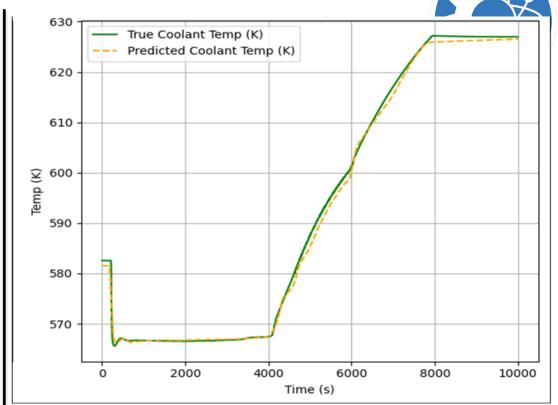


Figure 5: PINN Coolant Temp Trends

More Stable and Conservative

Statistical fit and physically conservative prediction margin

Fuel Temperature Evolvement

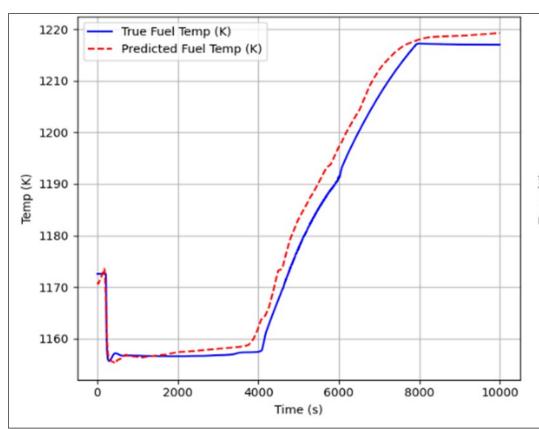


Figure 6: DNN Fuel Temp Trends

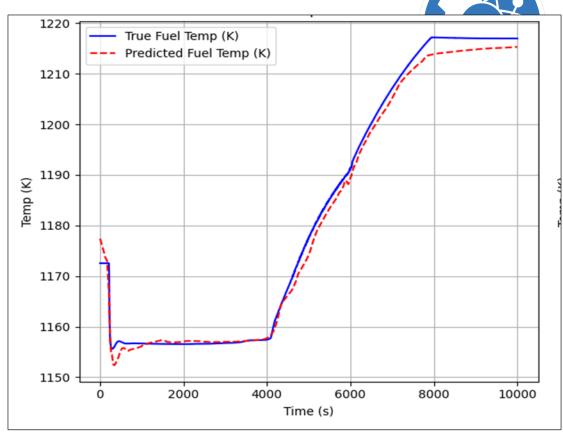


Figure 7: PINN Fuel Temp Trends

Statistical fit and physically conservative prediction margin

Pressure Trends During the Accident

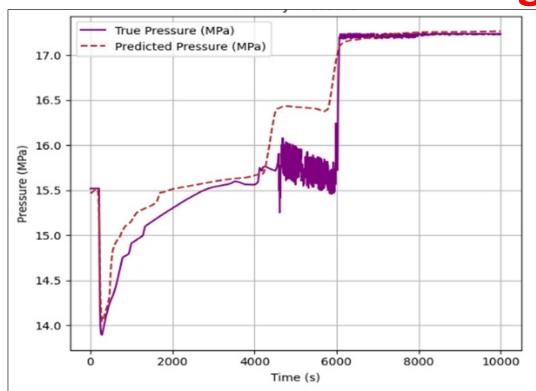


Figure 8: DNN Pressure Trends

- > Struggling in capturing high oscillations.
- Phase lag relative to true peak

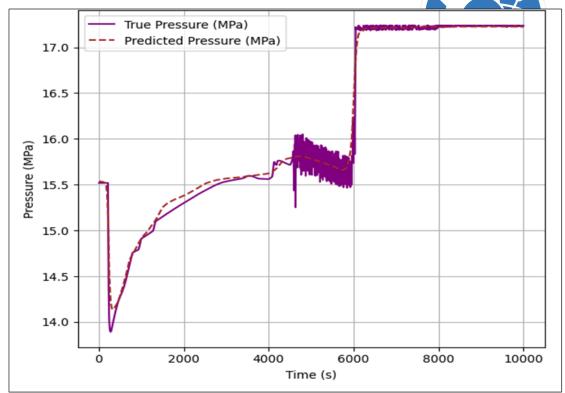


Figure 9: PINN Pressure Trends

- Reducing magnitude of peaks.
- Closely following true data's shape.

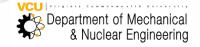
Stable physics constrained predictor

Discussion

Discussion: Physical Fidelity & Consistency

Table 4: DNN vs PINN Performance

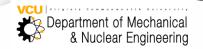
Paramete r	Metri c	Best DNN (TCN)	Best PINN (Shared- Encoder Multi-Head)	Improvement (%)	Comment
T_f	RMSE	78.89	52.10	33.9↓	Reduced temp prediction error by one-third.
	MAE	58.94	38.25	35.1↓	Lower average deviation
	\mathbb{R}^2	0.76	0.92	+21.1 ↑	Improved physical consistency
T_C	RMSE	58.96	41.50	29.6↓	Reduces T_C uncertainty
	MAE	50.54	35.22	30.3 ↓	Improved smoothness and generalization
	\mathbb{R}^2	0.16	0.88	+450 ↑	improve prediction
P_p	RMSE	0.57	0.39	31.6↓	Reduced prediction uncertainty
	MAE	0.34	0.27	20.6 ↓	Better pressure profile prediction
	\mathbb{R}^2	0.74	0.91	+23.0 ↑	Better adherence to system response
Overall	RMS	56.90	44.60	21.6 ↓	Lower deviations across all parameters
Average	\mathbf{E}				
	MAE	36.61	27.91	23.8 ↓	Better accuracy and generalization
	R ²	0.98	0.999	+1.6 ↑	Better consistence between predicted and primary data.



Discussion: Physical Fidelity & Consistency

Table 5: DNN vs PINN Performance

Feature	DNN	PINN
Prediction Stability	Volatility & Spikes (non- physical, high-frequency. It's a statistical curve-fitter)	Physical Smoothness (smoother and more stable)
Safety-Critical Peak Error	Non-Conservative Risk (Frequently exhibits MaxAE)	Conservative Margin (reduces the non- conservative MaxAE risk)
System Coupling	Decoupled (struggles to maintain thermodynamic coupling between variables)	Explicitly Coupled (more consistent system-wide predictions)



Conclusion & Future Work

- Both models provided predictions in the millisecond range (necessary for real-time applications.)
- The PINN models achieved 20-30% lower RMSE and 15-25% higher R² values across all parameters.
- Future models in reactor control and safety assessment must incorporate physics constraints to satisfy regulatory standards.
- ➤ Efforts to consider developing a higher-fidelity pressure model accounting for two-phase fluid properties.

References

- Wang, K., Li, F., Zhou, T., & Wang, D. (2024). Kriging surrogate model for optimizing outlet temperature distribution in low-emission combustors without dilution holes. AIP Advances, 14(5). https://doi.org/10.1063/5.0198258
- Antonello, F., Buongiorno, J., & Zio, E. (2023). Physics informed neural networks for surrogate modeling of accidental scenarios in nuclear power plants. Nuclear Engineering and Technology, 55(9), 3409–3416. https://doi.org/10.1016/j.net.2023.06.027
- Johnson, N., & Ma, Z. (2024). Analysis of Loss-of-Offsite-Power Events 2023 Update July 2024. http://www.inl.gov
- Zhang, B., He, J., Liu, P., Wang, L., & Tang, R. (2024). An automated multi-layer perceptron discriminative neural network based on Bayesian optimization achieves high-precision one-source single-snapshot direction-of-arrival estimation. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-60798-w
- Prantikos, K., Chatzidakis, S., Tsoukalas, L. H., & Heifetz, A. (2023). Physics-informed neural network with transfer learning (TL-PINN) based on domain similarity measure for prediction of nuclear reactor transients. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-43325-1

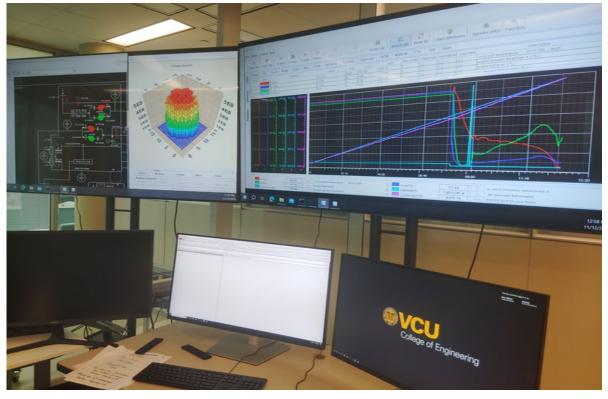


Acknowledgments

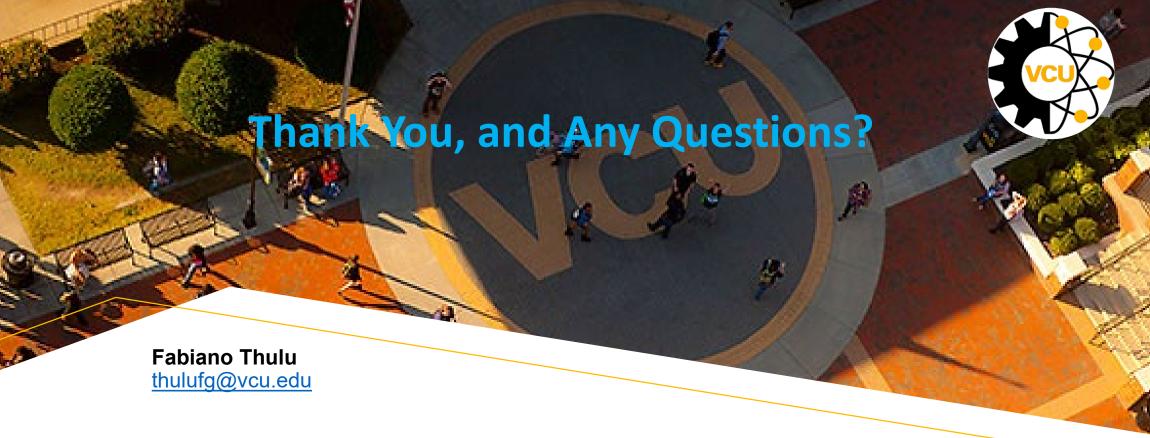
U.S. Department of Energy

"Improving the computational efficiency and usability of dynamic PRA with reinforcement learning"

Award No. DE-NE-0009505



VCU Reactor Simulator, College of Engineering



A Physics-Informed Neural Network Approach for Reliable Surrogate Modeling for PWR LOOP Accidents

Computation Applied Reactor Physics Lab

401 West Main Street, Richmond, VA 23284-3068