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Introduction
• MSRs are among the selected concepts for Gen IV reactors.
• They have unique features arising from adopting circulating fuel.
• New computational tools are needed for the analysis of MSRs.
• Evaluated experimental data is needed for verification and validation (V&V).

 Objectives of current work
• Developing a Multiphysics computational toolset for MSR analysis.
• Evaluating transient tests from the historical MSRE.
• Preparing a benchmark for the IRPhE handbook.
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Molten Salt Reactor Experiment (MSRE)
• Performed at ORNL (1965-1969 ).

• The objective was to verify the safety, and practicality of molten-fluoride, 
circulating-fuel reactor system.
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Design thermal power 10 MW

Maximum operation power 7.4 MW

Fissile material 235U then 233U

Coolant and fuel solvent FLiBe

Moderator Graphite

Design fuel temperature 1175-1225 oF (635-663 oC)

Design flow rate 1200 gpm (0.0757 m3/s)

Fuel circulation time ~25 sec



Mathematical Model for MSR Analysis
• Three physics components are considered 

in the model:
- Neutronics
- Transport of diluted species (i.e., precursors)
- Thermal hydraulics (T/H)

• A multiphysics model is developed and 
implemented in COMSOL Multiphysics.

• Fully coupled numerical scheme is 
employed in the calculations
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Neutronics Model
• The multigroup (MG) neutron diffusion equation is used to obtain the 

power shape and to calculate the effective delayed neutron fractions.

• A PKE customized for circulating fuel is used for the power magnitude. 
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Transport of Diluted Species 
• Transport of delayed neutron precursors (DNP).

• Transport of decay heat precursors (DHP).

• The DHP in MSRE can be modeled using one group with a generation 
fraction of 0.53% and decay constant of 0.066 [1/s].
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T/H Model
• Incompressible flow in pipes.

• Heat transfer in fluids.

• Heat transfer in solids.
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Boundary Conditions & Others
• BCs:

- Albedo BC for neutronics
- The two ends of the moderator matrix are 

treated as insulated boundaries.
- The flow is sustained using a point B.C. with a 

predefined flow rate.
• Active regions: Lower plenum, Core, and 

Upper plenum.
• The heat transfer coefficient in the core is 

modeled using The Dittus–Boelter 
equation.

• Ultimate heat sink is molded using fixed air 
temperature in the radiator.
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Primary loop geometry in COMSOL model



Model Verification and Validation (V&V)

• Set of three tests conducted at power operation.
• The fuel is 91% enriched 233U.
• At each power level, a predefined reactivity is inserted 

to initiate the transient.
• No operation action was carried out after initiating the 

transient.
• Large noise existed in the measured response due to 

large salt void percentage.

• Power change was calculated from the flux signal.
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Reactivity Insertion Tests



Modeling Results & Discussion
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8 MW Test Modeling Results
• After prompt rise, the hot lump of 

salt leaves the core casing the 
fuel temperature to plateau.

• After 25 s, the hot lump reenters 
the core causing the temperature 
to peak and the power to drop 
sharply.

• The effect of the circulation of 
this hot lump vanishes gradually.

• The graphite temperature rises 
gradually until steady state.
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Various Verification Models from Others
• Four different set of results from literature are used for code 

verification, and compared to our results
- ORNL model multi-region lumped representation of the MSRE with both 

primary and secondary loops modeled. 
- Zanitte model used a Multiscale representation of the MSRE, where the core 

is divided into three radial regions each with a 3D model. The remaining 
components are modeled as 0D. The temperature and DNPs in the PKE are 
importance-weighted.

- TRACE model uses a 1D representation and a customized PKE. The 
downcomer is considered an active area.

- SAM model is limited to the primary loop, the secondary loop is modeled using 
a fixed temperature.
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5 MW Test Results

• The prompt salt temperature rise is 
similar for all models except ORNL 
model.

• The rate of graphite temperature 
rise in Zanetti and TRACE models 
is higher than other models.

• Relative error in the power peak for 
current work 0.8%
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1 MW Test Results

• The deviation between SAM results 
and the current model can be 
attributed to the adoption of different 
BCs for the heat equation.

• Relative error in the power peak for 
current work 10.4%
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Conclusions & Future Work

• A Multiphysics model for MSRs is developed based the PKE and 
flow in pipes.

• The MSRE reactivity insertion tests are used for V&V.

• The model achieved good agreement with experimental data and 
other models.

 Future work

• Sensitivity and Uncertainty Analysis (SA/UQ)

• Natural Circulation Test.
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