

ALL REAL

STONE OF TON

24

20

American Nuclear Society Student Conference

April 4-6, 2024 | Penn State University

A Novel Stationary Molten Salt Reactor Design for Spent Nuclear Fuel Burning

Justin Shurie and Robert Krushelnisky

Undergraduate Students

Conventional MSR Designs

- MSR designs are limited by spatial constraints
- Fuel dissolved in salt lessens overheat concern
- Loss of 1st barrier in current LWR designs

Stationary MSR Concepts

- Moltex SSR-W: salt contained within assemblies
- Aristos Power Hard Spectrum Reactor (HSR) - scalable SMR
- BYU Molten Salt Micro Reactor (MSMR)
- VCU Inverted SSR concept

Moltex SSR-W

Aristos HSR

VCU Inverted SSR

Our Idea – UTSSR (U-Tube SSR)

- Fast spectrum to facilitate burning of long-lived actinides
- Fueled salt basin cooled by u-tube array
- Reactor to sit in pool of coolant salt which will serve to compensate as additional layer of protection

Reactor Design Parameters

- Core designed to generate minimal heat
- Fast neutron spectrum to create excess neutron leakage for burning Actinides
- Hexagonal array of u-tubes

Parameter	Value
Thermal power	300 MW
Effective fuel height	2.50 m
Core diameter	2.50 m
Inlet temperature	650 °C
Outlet temperature	700 °C
Mass flow rate (total)	2514.7 kg/s
Coolant tube diameter	0.8 cm
Coolant tube pitch	1.25 cm
Number of U-tubes	11922
Coolant tube thickness	1.0 mm

Materials Selected for the Design

- Chlorine will be enriched to 95% ³⁷Cl to reduce neutron capture cross section
- FLiBe was selected as coolant salt for its thermal conductivity
- Hastelloy-N is resistant to corrosion from fluoride salts

Material	FLiBe	Hastelloy-N	PuCl ₃ -NaCl
Thermal Limit	1430 ⁰C	1300 °C	1550 °C

Component in Fuel	Atom Percent
Sodium Chloride	60%
Spent Nuclear Fuel Trichloride	30%
Reactor Grade Plutonium Trichloride	10%

Preliminary T/H Performance

- Analytical T/H models were used to predict both the thermal and fluid behavior of the core
- Temperature limits were defined by material properties
- Gnielinsky correlation was used for Nusselt Number for the estimation of the heat transfer coefficient

Neutronics Modelling

- A Monte-Carlo N-Particle (MCNP) model was used to ensure the reactor as designed would achieve criticality.
- Tallies based on neutron energy and core location were used to generate energy flux spectrum and map.
- $k_{\rm eff} = 1.01518 \pm 0.00048$

Energy Spectra of UTSSR

CAD Modelling

- SOLIDWORKS model based on dimensions from analytical solver.
- Single channel dimensions kept adjustable for parameter changes.
- Full core model based on older tube dimensions but retains core features.

More CAD Diagrams of the Reactor

Coolant Plenum Cross Section

ANSYS Meshing

- Imported geometry from SOLIDWORKS
- Tetrahedral mesh totaling nearly 12M elements.
- Inflation in coolant and near tube walls

Flow and Temperature Distribution

- Volumetric heat generation generated from flux profile from MCNP
- Centerline fuel temperature was 835 °C.
- Coolant speed was higher than expected.
- Pressure drop in the tube was within expected tolerances.

Conclusions and Future Work

- UTSSR design was optimized for a balance between neutronics and heat transfer capability
- Preliminary results have shown with neutronically and thermodynamically feasibility to the UTSSR design
- Current thermohydraulic model iteration uses static fluid (no free convection)
- Single channel model uses adiabatic bounds
- U-tubes are small and may require structural analysis

References

- IAN SCOTT, "Stable Salt Reactors", Moltex Energy Ltd (2020).
- E. MERCADO, et al., "Neutronic Analysis of the BYU MSMR," ANS 2023 Student Conference, Knoxville, TN (2023).
- C. LU and Z. WU, "A Preconceptual Design of an Inverted Stable-Salt Reactor", PHYSOR 2022: International Conference on Physics of Reactors, Pittsburg (United States), May 15-20 (2022).
- C.J. WERNER, J.S. BULL, C.J. SOLOMON, et al., "MCNP6.2 Release Notes," LA-UR-18-20808. Los Alamos, NM, USA (October 2017).
- W. A. WIESELQUIST, R. A. LEFEBVRE, and M. A. JESSEE, "SCALE Code System," ORNL/TM/2005/39, Oak Ridge National Laboratory (2020).

Acknowledgements

- Other senior design team members:
 - Caleb King
 - William Strom
- Project advisor: Professor Zeyun Wu
- VCU HPC computing facility is utilized in the calculations.

Questions?

