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ABSTRACT 

This paper extends our recent work on the Physics-Informed Neural Networks (PINN) 
approach for the fixed source diffusion models (Ref. [10]) and applies it to the diffusion theory 
based k-eigenvalue problems. To make the PINN equitable for the eigenvalue problems, we 
introduce a novel integral regularization term to the loss function in the framework, and allow 
the direct inference of the principal eigenvalue and the associated eigenfunction. The 
regularization term enforces a pre-defined value on the integration of the model predictions, 
and this value can be directly related to a physical property of the system. We also introduce 
an additional learnable parameter to approximate the principal eigenvalue. As a proof of 
principle, we solve the one-group two-dimensional k-eigenvalue neutron diffusion equation in 
this work. We then provide two numerical examples to demonstrate the applicability of the 
PINN approach. In each example, we solve the k-eigenvalue diffusion equation in a multi-
region configuration constrained with a set of Robin boundary conditions for generality. We 
use a FEM solution based on the power-iteration method to verify the results of the PINN 
solution. The results showed relative percentage error in the predicted eigenvalue of ~0.77% 
and ~1.2% for example 1 and example 2, respectively. The mean absolute error in the 
predicted flux for example 1 is  ~0.002 and for example 2 is ~0.0024. These results indicate 
some preliminary successes of the PINN application to k-eigenvalue problems. 
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1. INTRODUCTION

Physics-Informed Neural Networks (PINN) is a framework that was first introduced by Raissi et al. [1] for 
solving general non-linear partial differential equations (PDEs). PINN can be applied for two classes of 
problems: data-driven solution (forward approach) and data-driven discovery (identification approach) of 
PDEs. In data-driven solution of PDEs, the solution of the PDE is approximated to a deep Neural Network 
(NN) model that is trained to regenerate the observed data while obeying the physical laws that govern the 
data. The PDE model can be constructed by applying automatic differentiation on the NN model. Data-
driven solutions for PDEs can be obtained by using a set of labeled initial and/or boundary points and a set 
of collocation points to optimize the NN learnable parameters in order to minimize a loss function that 
penalizes the model for both: mismatch between the model predictions and the labeled data, and deviation 
from the PDE model. In data-driven discovery of PDEs, a set of observed data points are available and a 
parameter that best fit the data to a parametrized PDE model is to be obtained. This problem can be solved 
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by introducing a learnable parameter that represent the unknown parameter. The additional learnable 
parameter along with the NN learnable parameters can be learnt in the same way as in the forward approach.  
 
Following with Raissi et al. [1], Yang and Perdikaris [2] developed a method to quantify uncertainty in the 
PINN predictions by introducing a class of probabilistic PINN. Probabilistic PINN can be trained to 
approximate an arbitrary conditional probability density function of the observable output depending on its 
free variables and a collection of random latent variables. This approach enables using noisy and incomplete 
data along with the physical laws to predict the system states. Jagtap et al. [3] introduced a class of adaptive 
activation functions (transfer functions) with a scalable hyper-parameter to accelerate the convergence of 
deep NNs and PINNs. Their results showed that adaptive activation functions are efficient in increasing 
convergence of NNs and also enhancing the performance due to increased learning capabilities. As of the 
time of the present work, PINN has been applied to various domains including: fluids [1, 4-7], quantum 
mechanics [1], Cardiac Activation Mapping [8], diffusion systems [9, 10], nano-optics and metamaterials 
[11], Power Systems [12], heat transfer [13, 14], etc. The advantages of PINN include providing a 
straightforward approach for obtaining mesh-free solutions of non-linear systems of PDEs. Moreover, 
PINN provide a framework for extracting accurate solutions from sparse and noisy observational data 
allowing the reduction of the need to repeat expensive experiments or numerical simulations. 
 
In our previous work [10], the PINN methodology has been customized and employed to solve two- 
dimensional (2D) fixed source neutron diffusion models as a demonstration to show the applicability of 
PINN for reactor physics problems. Preliminary results showed that nearly the same level of accuracy of 
the flux solution can be achieved by the PINN method compared to conventional numerical method such 
as finite element method (FEM). The computational cost of the PINN approach at current state is a little 
higher. However, by taking advantage of the state-of-the-art open source NN toolbox, the manpower efforts 
needed for developing the PINN can be significantly reduced compared to that required for the conventional 
method development. 
 
In the present work, we are extending the PINN solution to k-eigenvalue problems, still based on diffusion 
models. To our knowledge, this work represents the first attempt to implement PINN approach for 
eigenvalue type problems, which offers some valuable insights in the method implementation. To proceed, 
we introduce a novel regularization term in the loss function to allow for learning both the principal 
eigenvalue and the associated eigenfunction. In Section 2, we discuss the methods used for solving the 2D 
k-eigenvalue neutron diffusion equation. In Section 3, we tested the proposed PINN implementation with 
two numerical examples. In Section 4, we offered some concluding remarks on these research efforts.  
 
 

2. METHODOLOGY 
 
The one-group (1G) two-dimensional (2D) k-eigenvalue neutron diffusion equation may be given as 
 

 
where Σ𝑎𝑎 is the macroscopic absorption cross section, 𝛴𝛴𝑓𝑓 is the macroscopic fission cross section, D is the 
diffusion coefficient defined by 
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for the isotropic scattering case, and 𝛴𝛴𝑡𝑡, 𝛴𝛴𝑠𝑠 are the macroscopic total and isotropic scattering cross section, 
respectively. 
 
The most well-known numerical scheme to solve for the eigenvalue [i.e., the 𝑘𝑘 in Eq. (1)] is the power 
iteration method. In this scheme, a fixed-source type problem is essentially solved iteratively with the 
source term updated in each iteration. The method starts from an initial guess of the flux distribution and k 
value to calculate the R.H.S. of Eq. (1). Then, a numerical approach (e.g., FEM) is used to solve the fixed-
source problem for the new flux distribution. The new value of k and new source term is then updated from 
its physical definition. This process then iterates until convergence conditions are satisfied. A flow diagram 
of the power iteration scheme applied to Eq. (1) is shown in Figure 1. 
 

 
Figure 1. The scheme of power iteration method for solving the k-eigenvalue diffusion problem. 

 
To implement the PINN method to k-eigenvalue diffusion problems, we represent the flux solution by a 
NN model and introduce an extra learnable parameter for the unknown eigenvalue k. The method starts by 
defining a residual form of quantity f as follows: 
 

 
The direct implementation of PINN approach implies the construction of a NN (𝜙𝜙𝑛𝑛𝑛𝑛𝑡𝑡(𝑥𝑥,𝑦𝑦)) to approximate 
the solution. The training loss function has two terms: the first term is evaluated from the PDE model [i.e., 
Eq. (3)] at a set of collocation points, the second term is evaluated at a set of boundary points. The loss 
function penalizes the NN model on the deviation of predictions from the target values set by both PDE 
and its boundary conditions. The value of loss function and its derivatives with respect to the model 
learnable parameters is used to iteratively update the learnable parameters until a convergence condition is 
reached. Applying this approach to the eigenvalue diffusion problem will always converge to the trivial 
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solution ( 𝜙𝜙(𝑥𝑥,𝑦𝑦) = 0) and any arbitrary value of the eigenvalue (k). This result arises from the fact that 
Eq. (1) is homogenous and the attempt to directly minimize the quantity f  [i.e., Eq. (3)] will drive the model 
predictions towards 𝜙𝜙𝑛𝑛𝑛𝑛𝑡𝑡(𝑥𝑥,𝑦𝑦) = 0. To avoid the trivial solution, we add a regularization term to the loss 
function. The regularization condition can be defined in terms of some physical quantity such as the reactor 
power. 
 
The aim of the learning task is to obtain the fundamental solution (𝜙𝜙𝑛𝑛𝑛𝑛𝑡𝑡(𝑥𝑥,𝑦𝑦)|𝑘𝑘). The solution is defined 
in terms of the set learnable parameters (𝑘𝑘,𝑤𝑤, 𝑏𝑏), where w and b refer to the weights and biases of the NN 
model. The learnable parameters can be learnt by minimizing a loss function that consists of the following 
three terms: 
 
(1). Internal points loss term 

 
A NN model 𝑓𝑓𝑛𝑛𝑛𝑛𝑡𝑡(𝑥𝑥,𝑦𝑦) can be constructed by using Automatic differentiation on  𝜙𝜙𝑛𝑛𝑛𝑛𝑡𝑡(𝑥𝑥,𝑦𝑦) according to 
Eq. (3). The predictions of 𝑓𝑓𝑛𝑛𝑛𝑛𝑡𝑡(𝑥𝑥,𝑦𝑦) is evaluated at a set of collocation (𝑁𝑁𝑖𝑖𝑓𝑓) points that are obtained by 
sampling the solution domain. The error in  𝑓𝑓𝑛𝑛𝑛𝑛𝑡𝑡(𝑥𝑥,𝑦𝑦) predictions is defined as the MSE as follows: 
 

 
(2). Boundary points loss term 

 
We solve Eq. (1) with zero-incoming fluxes are assumed for all boundary surfaces of the problem (square 
geometry, side length = 100 cm), which can be expressed as Robin type boundary conditions as follows: 
 

 
 

 
 

 
 

 
For each boundary surface, a NN model is constructed by differentiating 𝜙𝜙𝑛𝑛𝑛𝑛𝑡𝑡(𝑥𝑥,𝑦𝑦) according to the 
corresponding ODE. For instance, for the left boundary we define 𝑏𝑏𝐿𝐿 as follows: 
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Eq. (9) is evaluated at a set of points sampled from the left surface to calculate its contribution to the model 
error. The total boundary loss is defined as follows: 
 

 
where the subscripts L, R, B, and T refer to the surfaces: Left, Right, Bottom, and Top respectively. 
 
(3). Regularization term 
 
The regularization term is used to enforce a non-zero solution for the homogenous equation. This can be 
done by restricting the integration of the converged flux to a fixed non-zero value. This condition can be 
written as: 
 

 
where C is a parameter that can be defined in terms of other physical quantities, or simply can be set to 
equal 1 to obtain a normalized solution. The integral in Eq.(11) can be estimated from the NN predictions 
at the set collocation points and the regularization term is defined as: 
 

  
Thus, the global training loss function to be optimized is: 
 

 

 
Figure 2. Schematic of PINN for learning the principal solution of the k-eigenvalue problems. 

 

 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏 =
1
𝑁𝑁𝑏𝑏

���𝑏𝑏𝐿𝐿�0, y𝐿𝐿
𝑗𝑗��

2
+ �𝑏𝑏𝑅𝑅�100, 𝑦𝑦𝑅𝑅

𝑗𝑗��
2

+ �𝑏𝑏𝐵𝐵�𝑥𝑥𝐵𝐵
𝑗𝑗 , 0��

2
+ �𝑏𝑏𝑇𝑇�𝑥𝑥𝑇𝑇

𝑗𝑗 , 100��
2

𝑁𝑁𝑏𝑏

𝑗𝑗

� (10) 

 �𝜙𝜙(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 = 𝐶𝐶 (11) 

 𝑅𝑅 =  �
1
𝑁𝑁𝑓𝑓

��𝜙𝜙𝑛𝑛𝑛𝑛𝑡𝑡(𝑥𝑥𝑖𝑖

𝑁𝑁𝑓𝑓

𝑖𝑖=1

,𝑦𝑦𝑖𝑖)� −
𝐶𝐶
𝑁𝑁𝑓𝑓
�

2

 (12) 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑓𝑓 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏 + 𝑅𝑅 (13) 



A schematic flow chart of the learning procedure of the PINN approach for solving the k-eigenvalue 
diffusion problem is shown in Figure 2. The training process starts by passing the training data sets through 
the NN model to evaluate the model predictions and automatic differentiation is used to evaluate the 
gradients of the predictions according to the PDE model and the boundary conditions. The learnable 
parameter k is then passed to the function 𝑓𝑓𝑛𝑛𝑛𝑛𝑡𝑡(𝑥𝑥,𝑦𝑦)to evaluate the predicted values of f. The model 
predictions are used to evaluate the loss function and its gradients with respect to the learnable parameters 
(k, w, b). An optimization algorithm (gradient decent-based) is then used to minimize the loss with respect 
to the learnable parameters. Finally, the optimum learnable parameters are used to construct the PINN 
solution as the predicted eigenvalue is represented by the learnable parameter k, and the predicted 
eigenfunction is represented by the model 𝑁𝑁𝑁𝑁(𝑤𝑤, 𝑏𝑏). 

 
 

3. NUMERICAL EXAMPLES 
 
We demonstrated our approach by solving the k-eigenvalue diffusion problem for two different 
configurations shown in Figure 3. The material properties of each region, as defined in Figure 3, are listed 
in Table I. 
 

 
Figure 3. The geometric configuration of the two numerical examples: (a) is the configuration of 

Example 1, and (b) is the configuration of Example 2. 

 
Table I. Material for the two numerical examples 

 
Region Material 𝛴𝛴𝑎𝑎 (cm-1) 𝐷𝐷 (cm) 𝑣𝑣𝛴𝛴𝑓𝑓  (cm-1) 

Core1 0.062158 2.2008 0.107622 
Core2 0.062158 2.2008 0.102622 

Blanket 0.064256 2.095 0.0 
 
Training parameters and NN architecture are the same that were used in our previous work [10] for solving 
the fixed-source diffusion model. For each of the two numerical example we used a NN model with 8 
hidden layers, 40 neurons per layer, and the hyperbolic tangent sigmoid transfer function is used as the 
activation function. The learnable-parameters optimization was conducted by using Adam optimizer [15], 
which is a stochastic gradient decent optimization algorithm, for fixed number of iterations (105 iterations) 
before training on L-BFGS algorithm [16] until convergence. All models were implemented using 



Tensoflow1.0 [17] python library. We used a training set with 𝑁𝑁𝑓𝑓 = 104 and 𝑁𝑁𝑏𝑏 = 102. All points were 
generated based on the Latin-hyperbolic sampling (LHS) strategy [18]. The value of the regularization 
parameter was taken to be 𝐶𝐶 = 103. To verify the results of PINN approach, we obtained the reference 
solution of the examples by developing an algorithm based on the power iteration framework using the 
FEM solver integrated in COMSOL5.0 [19] as the flux solver. 

3.1. Example 1 
 
In the first numerical example, we solve the k-eigenvalue diffusion model for the configuration given in 
Figure 3 (a). The predicted value of 𝑘𝑘 = 0.9538 and the power iteration algorithm converged at  𝑘𝑘 =
0.9612. The relative percentage error in the predicted value is ≈  0.77%. The predicted flux along with the 
pointwise different between the FEM solution and predicted flux is shown in Figure 4. The mean absolute 
error in the predicted flux is ≈ 0.002. 
 

 
Figure 4. Flux solution for Example 1: (a) heatmap of the predicted flux, and (b) relative difference 

between the reference solution and PINN solution. 

3.2. Example 2 
 
In the first numerical example, we solve the PDE for the configuration given in Figure 3 (b). The predicted 
value of 𝑘𝑘 = 0.94861and the power iteration algorithm converged at  𝑘𝑘 = 0.9602. The relative percentage 
error in the predicted value is ≈  1.2%. The predicted flux along with the pointwise different between the 
FEM solution and predicted flux is shown in Figure 5. The mean absolute error in the predicted flux is  ≈
0.0024. 



 

 
Figure 5. Flux solution for Example 2: (a) heatmap of the predicted flux, and (b) relative difference 

between the reference solution and PINN solution. 

 
4. CONCLUSIONS 

 
In this work, the forward PINN was extended to k-eigenvalue problems based on the diffusion model. In 
particular, the one-group (1G) two-dimensional (2D) k-eigenvalue neutron diffusion equation was solved. 
To accommodate the PINN for the eigenvalue problem, we modified the loss function in the forward PINN 
frame by introducing a novel integral regularization term. The addition of the regularization term eliminates 
the trivial solution, which would always result from the straightforward implementation of the PINN 
approach for homogenous eigenvalue problems. The value of the regularization constant in the regulation 
term can be related to certain physical property of the system. In addition to the common NN learnable 
parameters (𝑤𝑤, 𝑏𝑏) that are used to approximate the solution of the PDE model in the forward PINN frame, 
we also introduced a learnable parameter to approximate the principal eigenvalue. All learnable parameters 
can be trained by minimizing the loss function which penalizes the model for: mismatch between 
predictions and boundary conditions, the value of the residual (f), and the deviation of the estimated 
integration value from the predefined regularization constant. 
 
We demonstrated the proposed approach by applying it in numerical examples. We used the same 
hyperparameters that were optimized in our previous work [10] for the loosely coupled reactor model 
(LCRM) problem. Two variants of the LCRM were established as the numerical examples. For each 



example, we used a NN model with 8 hidden layers, 40 neuron per hidden layer, and the hyperbolic tangent 
sigmoid activation function. The solution domain was sampled using 104 collocation points and 102 
boundary points per side. All points were generated using the LHS technique. The training was performed 
using Adam optimizer for fixed number of iterations (105 ) followed by training on L-BFGS algorithm until 
convergence criteria are met. The obtained solutions were verified against a FEM solution based on the 
power iteration method. For numerical example 1, the relative percentage error in the predicted eigenvalue 
is ~0.77% and the mean absolute error in the predicted flux is ~0.002. The errors are slightly higher for 
example 2 as the relative percentage error in the predicted eigenvalue is ~1.2% and the mean absolute error 
in the predicted flux is  ~0.0024. We used the mean error as a performance metric for the predicted flux 
instead of the relative error to distinguish the error distribution inside the solution domain because the 
relative error is much higher (two orders of magnitude) at boundaries compared to the internal points. 
   
PINN solutions encompass two types of errors. The first type is the approximation error which results from 
using specific NN configuration to approximate the unknown target function. Using appropriate depth and 
width for the NN model and a suitable activation function should reduce the approximation error. The 
second type is the training error which results from both the training data and the optimization algorithm. 
The second type of error has a stochastic nature and depends on the number of points sampled from the 
solution domain and the sampling strategy. However, with a sufficient number of training points there 
should be a small dependence on the training data set. The major contribution in the PINN error is due to 
the optimization approach. The accuracy of PINN-based solutions mainly depends on the minimum 
achieved value of the loss function. While there is no guarantee for the convergence to a global minimum 
of the loss function and due to the nature of stochastic gradient descent-based optimizers, the predicted 
solution will have some level of error randomly scattered across the solution domain. The magnitude of this 
error depends on the minimum value of the loss function achieved which in turn depends on the 
optimization algorithm hyperparameters and the number of iterations.  
 
Our work demonstrated the capability of the PINN approach for the direct inference of the principal 
eigenvalue and the corresponding eigenfunction with the same level of accuracy compared with 
conventional numerical approaches. The computational cost of the PINN approach for eigenvalue problems 
is essentially the same as the cost of the PINN approach for fixed problems. This results from the fact that 
the solution is learnt directly form the PDE model without the need to reduce the problem to a fixed problem 
that need to be solved iteratively, such as the power-iteration framework. This makes the computational 
cost of PINN approach comparable to conventional numerical approaches for eigenvalue problems. 
Moreover, this approach potentially has the advantage of being insensitive to the dominance ratio (DR) of 
the reactor because the conventional power iteration procedure is precluded in the PINN approach. Other 
advantages of PINN approach include: reduction in manpower efforts, and the applicability of complex 
geometries and versatile boundary conditions with very little sacrifice to the accuracy. Future considerations 
of this work include extensions of the current efforts to multigroup diffusion equations as well as neutron 
transport models for reactor problems. 
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