

American Nuclear Society Student Conference

April 4-6, 2024 | Penn State University

A High-Fidelity Multiphysics Computational Model for Pebble Bed Gas Reactor based on Open-Source Software

Kashminder S. Mehta

Ph.D. Student

Background

Source-Wikipedia

- First pebble bed reactor –AVR reactor
- West Germany- Jülich Research Centre
- **Operated** 1967-1988
- **Power** 46MWt (15MWe)

- **Currently Operating** –HTR-10 prototype at Shidaowan site, China
- Electricity- 210MWe

- Xe-100 reactor awarded ARDP in 2020
- World's first commercial scale advanced nuclear reactor in Washington state, U.S.
- Capacity: 200 MWt (82.5MWe)
- Scheduled delivery by 2027

Introduction of HTG-PBR

High temperature gas-cooled pebble bed reactor (HTG-PBR)

- HTG-PBR is an emerging as a next generation (Gen-IV) reactor
- Thousands of pebbles used as fuel in HT-PBR
- Each pebble is like a spherical ball filled with thousands of TRISO particles
- Helium gas transfers heat energy by flowing through pebbles structure pores
- Pebbles circulates continuously through the reactor core throughout operational lifespan

- Computational modeling of HTG-PBR involves addressing multiple physics aspects, including nuclear reactions, energy interaction between gas and pebbles, gas flow within the pebble bed, and continuous pebble recirculation.
- The reactor models contain complex structures, incorporating the reactor shell, moderator, and control rods, among other components.
- Ensuring accurate modeling of pebble depletion rates is essential for effective reactor performance assessment.

- To create a comprehensive model for a full-scale High-Temperature Gas-cooled Pebble Bed Reactor (HTG-PBR) by integrating the open-source CFDEM and OpenMC codes.
- To analyze the neutronic behavior, including spatial and temporal pebble depletion, as well as conduct thermal and fluid flow analysis within the reactor core.

Computational Models (CFD-DEM)

Computational Models (OpenMC)

 OpenMC – Monte Carlo based 3D neutron transport code, analyzing neutronic behavior in reactors.

$$\begin{split} \Sigma_t(\vec{r}, E)\psi(\vec{r}, E, \vec{\Omega}) + \vec{\Omega} \cdot \nabla \,\psi(\vec{r}, E, \vec{\Omega}) - \int_0^\infty dE' \int_{4\pi} d\Omega' \Sigma_s(\vec{r}, E' \to E, \vec{\Omega}' \to \vec{\Omega})\psi(\vec{r}, E', \vec{\Omega}') \\ = \frac{1}{k_{\text{eff}}} \frac{\chi(E)}{4\pi} \int_0^\infty dE' \nu(E') \Sigma_f(\vec{r}, E') \phi(\vec{r}, E') \end{split}$$

• OpenMC utilizes the Bateman equation for pebble fuel depletion

$$\frac{dN_{i}(t)}{dt} = \lambda_{i-1}N_{i-1}(t) - \lambda_{i}N_{i}(t)$$

• Recently added, it offers high-performance capabilities and a user-friendly interface.

Coupling CFD-DEM and OpenMC

Single Pebble Model - Code Verification

• Code to Code verification of k_{∞} in a single pebble with different Monte Carlo code: OpenMC and MCNP

Uniform TRISO distribution

Random TRISO distribution

Table. Pebble material composition

Material	Density (g/cm³)	Composition (atomic fraction)	Dimension (µm)
UCO Fuel	10.9	 ²³⁵U: 0.05232 ²³⁸U: 0.28101 ¹⁶O: 0.49982 ¹⁷O: 0.00019 C: 0.16667 	425 (diameter)
Carbon Buffer	1.0	C: 1.0	100 (thickness)
PyC1	1.9	C: 1.0	40 (thickness)
PyC2	1.9	C: 1.0	40 (thickness)
SiC	3.2	C: 0.5 Si: 0.5	35 (thickness)
Graphite	1.75	C: 1.0	6 cm diameter with a 0.5 cm thickness non- fuel shell

Results at Hot Operation Condition

• k_{∞} a single pebble with TRISO particles uniformly and randomly distributed at **1200 K** temperature.

Pebble Model		k_{∞} (White B.C.)	k_{∞} (Mirror B.C.)
	MCNP	1.50821 +/- 0.00007	1.51774 +/- 0.00007
Uniform	OpenMC	1.50789 +/- 0.00012	1.51757 +/- 0.00012
	deviation	0.00031	0.00017
	MCNP	1.51203+/- 0.00008	1.52111 +/- 0.00006
Random	OpenMC	1.51071+/- 0.00012	1.51980 +/- 0.00012
	deviation	-0.00132	0.00131

Results at Cold Operation Condition

• k_{∞} of a single pebble with TRISO particles uniformly and randomly distributed at **room** temperature.

Pebble Model		k_{∞} (White B.C.)	k_{∞} (Mirror B.C.)
	MCNP	1.60743 +/-0.00008	1.61471+/-0.00004
Uniform	OpenMC	1.60818 +/- 0.00011	1.61560 +/- 0.00012
	deviation	-0.00067	-0.00089
	MCNP	1.61017 +/-0.00007	1.61723 +/-0.00006
Random	OpenMC	1.61025 +/-0.00011	1.61739 +/- 0.00012
	deviation	0.00008	0.00016

HTR-PBR Model – DEM Part

3D CAD model of HTR-PBR core

Parameter	Value
Poisson's Ratio	0.12
Coefficient of Restitution	0.6
Sliding Friction Coefficient	0.3
Rolling Friction Coefficient	0.1
Number of Pebbles	220849
Pebble insertion rate	2500 per second

Video show of pebble inserting into HTR-PBR core

HTR-PBR Model – OpenMC Part

OpenMC Results (Reflective Axial B.C)

Reflective surface

- Simulation run with initial fixed point neutron source defined in each pebble, generating 250000 neutron particles for each cycle, with a total of 100 cycles
- The workstation used for simulation as 40 cores, 1 thread per core, 2.40GHz Intel Xeon E7-8894-processors, 2880GB memory.

k _{eff}	Leakage fraction (%)	Simulation time
1.39160 +/-0.00021	4.780 +/- 0.005	3 hours

Reflective surface

OpenMC Results (Axial Reflectors Modeled)

Vacuum

Top reflector

Vacuum

Considering axial (Top and Bottom reflector) non-reflective boundary condition

k _{eff}	Leakage fraction (%)	Simulation time
1.39035+/-0.00021	4.787 +/- 0.005	3 hours

Bottoms reflector

Vacuum

Conclusions & Future Work

Completed work:

- Computational models of a full-scale HTG-PBR reactor
- Code verification results using a single pebble model
- Preliminary results on steady-state coupled DEM-OpenMC full core model

Ongoing and future work:

- Incorporating a more realistic reactor core design, considering pebbles movement and control rods.
- Conducting thermal and fluid analysis in packed pebble bed reactor..
- Verifying and validating the full-scale reactor against benchmark cases provided in literature and the IRPhE Handbook.

References

- 1. E. J. MULDER and W. A. BOYES, "Neutronics characteristics of a 165 MWth Xe-100 reactor," *Nuclear Engineering and Design*, **357** 110415 (2020).
- 2. J. YU, Q. WANG, D. SHE, B. FORGET, "Modelling of the HTR-PM Pebble-bed Reactor using OpenMC," *Trans. Am. Nucl. Soc.*, **122**, 9–12 (2020)
- 3. E. J. MULDER and S.VAN STADEN, "The coupled neutronics and thermo-fluid dynamics design characteristics of the Xe-100 200 MWth reactor," International Topical Meeting on High Temperature Reactor Technology (HTR-2016), Las Vegas, NV, Nov 6-10 (2016).
- 4. Ü. COLAK and V. SEKER, "Monte Carlo criticality calculations for a pebble bed reactor with MCNP," *Nuclear Science and Engineering*, **149**, 131–137 (2005).
- 5. M. JARADAT, S. SCHUNERT, and J. ORTENSI, "Gas-Cooled High Temperature Pebble-Bed Reactor Reference Plant Model," Idaho Natl. Lab. INL/RPT-23 (2023)
- 6. C. KLOSS et al., "Models, algorithms and validation for opensource DEM and CFD-DEM," *Prog. Comput. Fluid Dyn. An Int. J.*, **12**(2/3), 140–152 (2012).

Acknowledgments

- Co-authors of this paper: Dr. Braden Goddard and Dr. Zeyun Wu
- We thank Justin Shurie and Holden Walker for the help of reviewing the summary.
- This work is performed with the support of U.S. Department of Energy's Nuclear Energy University Program (NEUP) with the Award No. DE-NE0009304.

American Nuclear Society Student Conference

April 4-6, 2024 | Penn State University

A High-Fidelity Multiphysics Computational Model for Pebble Bed Gas Reactor based on Open-Source Software

Kashminder S. Mehta

Ph.D. Student,

