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INTRODUCTION 

 

The point reactor kinematic equation (PRKE) is a 

simplified mathematical model used to describe the fast 

transient behavior of the neutron and neutron precursor 

population in a nuclear reactor. The standard PRKE model 

assumes the neutron distribution is spatially constant and thus 

the reactor can be simplified to a ‘point’. The benefit of this 

modeling is that it provides the total number of neutrons 

within a reactor which can then provide information on the 

thermal power output of said reactor. In the standard PRKE 

model for conventional reactors like pressurized water 

reactors (PWR), a set of coupled ordinary differential 

equations (ODE) are used. In molten salt fueled reactors 

(MSR), the fuel is dissolved into a working fluid that causes 

delayed neutron precursors (DNP) to drift out of the core and 

reenter the core with a delay and at a diminished amount. This 

delayed neutron loss occurs as the DNP’s are carried outside 

of the core and into a region in which the precursor’s decays 

and neutrons generated in this region cannot effectively 

contribute to the chain reactions within the system. 

Additionally, the drifting of the DNP’s means that the 

delayed neutrons and the prompt neutrons will have a 

different spatial distribution. To count this DNP drift effect 

in MSR, the conventional ODE based PRKE is modified 

accordingly and formed as a set of delayed differential 

equations (DDE) model. This effectively models the total 

neutron population despite the spatial differences between 

the  prompt neutrons and the delayed neutrons released by the 

DNP’s. 

The purpose of this work was to use the built-in 

MATLAB delayed differential equation solvers to model and 

predict the point kinetics behavior for nuclear reactors. 

Specifically, the built-in function, dde23, was used to solve 

the PRKE for a MSR to account for its unique fuel flowing 

and DNP drifting feature. 

 

THEORY 

 

The neutron behavior in the ODE based PRKE model is 

described as  
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where P(t) stands for the power rate, 
net is the net reactivity 

of the core, β is the effective delayed neutron fraction, Λ is 

the prompt neutron generation time, and
i is the decay 

constant for the ith group of DNP, and Ci is the concentration 

for the ith group of DNP governed by a set of DDE since there 

is an inlet and outlet for the fuel salt within the MSR core, as 

shown in Fig. 1. 

 

 
Fig. 1. Schematic of the primary fuel loop in MSR [1]. 

 

The DNP concentration equation in the PRKE model is 

described as the following DDE formulation 
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where βi is the delayed neutron fraction contributed from the 

ith group of the DNP, 
C  is the time taken for the fuel salt to 

travel through the core, and 
L  is the time the fuel salt travels 

outside of the core that is given by: 

L HL H CL   = + +                                 (3) 

where 
HL ,

H , and 
CL  are the time the fuel salt travels 

through the hot leg, heat exchanger, and cold leg of the 

reactor respectively. These time constants are also shown in 

Fig. 1 and their values are reactor dependent. For the purpose 

of this experiment, the values of these will match those in the 

reference solution [2]. As can be seen, Eq. (2) is coupled to 
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Eq. (1) in that the power dictates the rate of creation of the 

neutron precursors and vice versa. 

The temperatures of the different components within the 

reactor system are needed to determine the net reactivity of 

the system because of the thermal feedback. The temperature 

of the ith node of the fuel salt within the reactor is given by  

,

, , ,

,

, , , 1

( ) { ( ) [ ( ) ( )]

[ ( ) ( )]}

f g

f i f i g i f i

f p f

p f f i f i

kd N
T t f P t T t T t

dt m c N

mc T t T t



−

= + −

− −

   (4) 

where N is the number of nodes the reactor and heat 

exchanger are split into, 
,p fc  is the heat capacity of the fuel 

salt, 
f is the fraction of heat generated in the fuel, 

if is the 

fraction of energy generated in the ith node, 
,f gk is the fuel to 

graphite heat transfer coefficient, 
, ( )g iT t is the graphite 

temperature in the ith 
node, 

, ( )f iT t  is the fuel temperature in 

the ith node, and m is the fuel salt mass flow rate. The 

graphite moderator temperature is given by 
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where 
gm is the mass of the graphite, 

,p gc  is the heat capacity 

of the graphite, and 
g is the fraction of heat generated in the 

graphite. Lastly the temperature of the fuel salt within the 

heat exchanger was given by: 
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where 
hm is the mass of the fuel salt within the heat 

exchanger, 
,p hc  is the heat capacity of the fuel salt within the 

heat exchanger, 
,f sk is the heat exchanger heat transfer 

coefficient, 
,h iT is the temperature of the fuel salt in the ith 

node, and 
,c iT  is the temperature of the coolant in the ith node, 

which is assumed to be constant and uniform across nodes. 

In the case of the zeroth nodes of the fuel salt and the heat 

exchanger, the thermal coupling is defined by 

,0 ,( ) ( )f h N CLT t T t = −                              (7) 

and 

,0 ,( ) ( )h f N HLT t T t = −                              (8) 

Using Eq.(4) through Eq.(8), the initial temperatures of 

the fuel salt and the graphite can be obtained by using a steady 

state condition. Following the calculations for initial 

temperatures, there is a need to solve for the base reactivity 

insertion needed due to the outflow of DNP in the MSR [3], 

which is given by 
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where
0 is the base reactivity and  is average decay 

constant of the DNP. All these parameters are then integrated 

into the net reactivity model 

0( ) ( ) ( )i fbt t t   = + +                        (10) 

where 
i  is the externally inserted reactivity. In this scenario 

of nodal thermal couplings [1], the reactivity feedback is 

given as 
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where 
,f iI  is the neutron importance factor in the ith node of 

the fuel salt, and 
,g iI is the neutron importance factor for the 

ith node of the graphite section. 

 

CASE PROBLEM AND RESULTS 

 

In calculating the expected change in power for a given 

reactivity insertion, the built-in MATLAB solver dde23 was 

used to solve the system of delayed differential equations 

summarized above. To increase the fidelity of the dde23 

function, the solver was set to have a relative tolerance and 

absolute tolerance of 1E-12. The values of the variables and 

initial conditions needed for simulating the reactivity 

insertion accident (RIA) of a typical MSR are respectively 

summarized in Table A.I and Table A.II shown in the 

Appendix. The expected power change during the 10 pcm 

positive reactivity insertion for the given MSR was extracted 

from a reference paper [2], specifically the “1 Node” solution 

in Fig.2, while the solutions calculated from the DDE model 

(i.e., from this work) were compared to the “1 Node” 

reference solution. Note we only employed a one-node model 

in the current MATLAB implementation. 

 
Fig.2. Expected power change with 10 pcm insertion into 

the given MSR [2]. 

 

 



 

Fig.3. Comparison of power transients over 200 s. 

 

Comparing the power change curves in Fig.3, one can 

see the general shape and magnitude of the curve between the 

documented and DDE modeled results are very close, with 

both having an initial spike followed by a small drop and then 

a plateau. This, Fig. 3, shows the accuracy of the MATLAB 

dde23 function when used to calculate the long-term effects 

caused by the 10 pcm insertion of reactivity into the reactor. 

However, there are short term inaccuracies associated with it, 

as seen in Fig. 4. 

 

 

Fig.4. Comparison of power transients over 10 s. 

 

Upon narrowing the time scale, a key difference in when 

the power spikes peak and the behaviors of the reactor power 

immediately following the power reaching its peak appears. 

In comparison to the reference solution, the MATLAB 

solution peaks slightly after the reference solution and does 

not dip below its steady state value before reaching steady 

state. Instead, it gradually declines to its steady state power. 

This error could originate from how MATLAB handles 

modeling with a single node in the thermal system or from 

the chosen delay differential equation tolerance. Despite this, 

the one-node DDE model of the MSR nearly mirrors the 

single node model in the Ref. [2]. 

Despite the inaccuracies in the mentioned topics, the 

quick generation of a generalized behavior of a reactor upon 

a reactivity insertion can prove to be valuable for cases where 

the reactor behavior needs to be predicted within a small 

window of time and the short-term behavior is negligible.  

 

CONCLUSION AND FUTURE WORK 

 

This research revealed the benefit of using built-in 

MATLAB functions as a solver for DDEs in reactor physics 

as it maintains a moderate degree of  short-term accuracy and 

a high degree of long-term accuracy while having a shorter 

code run time. The current success lies in how the code 

replicates the shape  and magnitude of the curves, for power 

and for DNP. The current short comings are that the time at 

which the value for power peaks is later than the expected 

results. Further research and analysis into MATLAB dde23 

and PRKE modeling for MSRs need to be conducted to better 

understand the reasoning for the delay that occurs before the 

spike in power and into application of a multi-nodal reactors 

using MATLAB dde23. 

 

APPENDIX  

 

TABLE A.I. Variables used in the given MSR model. 

Symbol Name Unit Value 
( )t  Net reactor reactivity Unitless Calculated 

( )i t  Reactivity inserted pcm 10 

0  Critical Reactivity Unitless Calculated 

f  fuel feedback 

coefficient 

1

C
 -3.2 x 10-5 

g  Moderator (graphite) 

feedback coefficient 

1

C
 2.35 x 10-5 

,f iT  Fuel temperature at 

the ith node 
C  Calculated 

,c iT  Coolant temperature 

at the ith node 
C  Calculated 

,g iT  
Graphite 

Temperature at the ith 

node 

C  Calculated 

,h iT  HX Salt Temperature 

at the ith node 
C  Calculated 

( )P t  Reactor Power W Calculated 

  Delayed neutron 

fraction 
Unitless 

Element 

Dependent 

  
Neutron prompt 

generation time 

1

s
 43.6*10−

 

  decay constant 
1

s
 

Element 

Dependent 

( )iC t  
Delayed neutron 

precursor 

concentration 

atoms Calculated 

m  Fuel mass flow rate 
kg

s
 1.2 x 104 

fm  Mass of fuel kg 
5.42 x 104 
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,p fc  Fuel heat capacity 
*

J

kg C
 1357 

gm  Mass of moderator 

(graphite) 
kg 

1.22 x 106 

 

,p gc  Moderator heat 

capacity (graphite) *

J

kg C
 1760 

hm  Mass of salt fuel in 

the HX 
kg 

5.38 x 103 

 

,p hc  Fuel heat capacity of 

fuel salt in the HX *

J

kg C
 

1357 (
,p fc =

,p hc ) 

,f gk  Fuel to graphite heat 

transfer coefficient o

W

C
 2.48 x 107 

,f sk  Heat exchanger heat 

transfer coefficient o

W

C
 2.32 x 107 

f  Fraction of heat 

generated in the fuel 
Unitless 0.97 

g  
Fraction of heat 

generated in the 

graphite 

Unitless 0.03 

C  Core transit time 

constant 
s 4.5 

L  Loop transit time 

constant 
s 6.0 

CL  Cold leg transit time 

constant 
s 2.1 

H  Heat exchanger 

transit time constant 
s 1.8 

HL  Hot leg transit time 

constant 
s 2.1 

if  
Fraction of energy 

generated in the ith 

node 

Unitless 1 

N Number of nodes Unitless 1 

,f iI  Neutron importance 

factor of the fuel salt 
Unitless 1 

,g iI  Neutron importance 

factor of the graphite 
Unitless 1 

 

 

 

 

 

 

 

 

 

 

TABLE A.II. Initial conditions given by the steady state. 

Variable Equation / Value Unit 

(0)P  2,250,000 W 

1(0)C  
1

1

*

1

* (0)

1
[ (1 )]*L

C

P

e
 






−
+ − 

 
Atoms 

2 (0)C  
2

2

*

2

* (0)

1
[ (1 )]*L

C

P

e
 






−
+ − 

 
Atoms 

3(0)C  
3

3

*

3

* (0)

1
[ (1 )]*L

C

P

e
 






−
+ − 

 
Atoms 

4 (0)C  
4

4

*

4

* (0)

1
[ (1 )]*L

C

P

e
 






−
+ − 

 
Atoms 

5 (0)C  
5

5

*

5

* (0)

1
[ (1 )]*L

C

P

e
 






−
+ − 

 
Atoms 

6 (0)C  
6

6

*

6

* (0)

1
[ (1 )]*L

C

P

e
 






−
+ − 

 
Atoms 

(0)fT  685.16 Celsius 

(0)gT  687.88 Celsius 

(0)hT  546.98 Celsius 

(0)cT  450 Celsius 
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