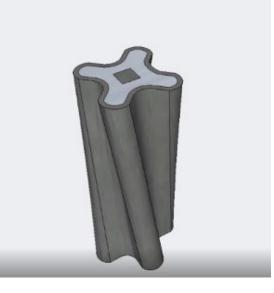
Material Attractiveness of Advanced Nuclear Fuels 2023 ANS Winter Meeting (ANTPC 2023), November 12 – 15, 2023 Braden Goddard, Zachary Crouch, Ben Impson, and Zeyun Wu

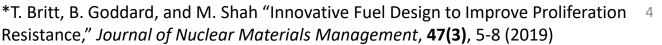
College of Engineering Mechanical and Nuclear Engineering

Not All Uranium and Plutonium are the Same

工

Goals* of Advanced Nuclear Fuels


- Example design criteria
 - Safety
 - E.g. accident tolerant fuel
 - Economics
 - E.g. less frequent refueling outages
 - Waste Management
 - E.g. thorium based fuels
 - Proliferation
 - Safeguardability
 - Proliferation resistance
 - Etc.


Two Advanced Fuels

- TRISO fuel
 - UCO kernel
 - SiC cladding
 - Small size
 - 0.4 mm diameter
 - Imbedded in graphite matrix for moderation
 - Compatible with HALEU

- Lightbridge fuel*
 - UZr metallic fuel
 - Cruciform geometry
 - Compatible with existing PWRs
 - Compatible with HALEU

Radiation Transport Simulations

MCNP 6.2 burnup simulations

- -X-energy single pebble
 - 19.75% enriched
 - Burnup 161,000 MWd/MTU

- Lightbridge single fuel pin

- 19.75% enriched
- Burnup 199,960 MWd/MTU

Pu composition	²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu
Weapons - grade Pu*	0.00%	93.60%	5.90%	0.40%	0.10%
MOX - used*	0.51%	51.03%	28.58%	15.80%	4.09%
Reactor - grade Pu	2.40%	53.60%	23.60%	14.30%	6.10%
Lightbridge	14.20%	35.50%	19.70%	14.60%	16.00%
TRISO	5.89%	32.80%	22.06%	18.99%	20.25%

*B. Goddard and A. Totemeier, "Improved Disposition of Surplus Weapons-Grade Plutonium Using a Metallic Pu-Zr Fuel Design," *Nuclear Technology*, **209(5)**, 696-706 (2023)

Material Attractiveness (Bathke et al.*)

• Critical mass (*M*), heat generation (*h*), spontaneous fission (*S*), and radiation dose (*D*) determine a materials attractiveness

•
$$FOM_2 = 1 - \log_{10} \left(\frac{M}{800} + \frac{Mh}{4500} + \frac{MS}{6.8(10)^6} + \frac{M}{50} \left[\frac{D}{500} \right]^{\frac{1}{\log_{10} 2}} \right)$$

• $FOM_1 = 1 - \log_{10} \left(\frac{M}{800} + \frac{Mh}{4500} + \frac{M}{50} \left[\frac{D}{500} \right]^{\frac{1}{\log_{10} 2}} \right)$

FOM	Weapons Utility	Attractiveness		
> 2	Preferred	High		
1-2	Attractive	Medium		
0-1	Unattractive	Low		
< 0	Unattractive	Very Low		

*C. Bathke et al., "The Attractiveness of Materials in Advanced Nuclear Fuel Cycles for Various Proliferation and Theft Scenarios," *Nuclear Technology*, **179(1)**, 5-30 (2017)

Material Attractiveness

FOM	Attractiveness
> 2	High
1-2	Medium
0-1	Low
< 0	Very Low

Pu composition	M (kg)	h (W/kg)	S (n/s/kg)	D (rad/h)	FOM ₁	FOM ₂
Weapons - grade Pu	16.27	2.18	6.20x10 ⁴	~0	2.55	1.75
MOX - used	21.91	6.28	3.75x10 ⁵	~0	2.24	0.90
Reactor - grade Pu	21.21	16.40	4.07x10 ⁵	~0	1.98	0.86
Lightbridge	22.87	81.68	8.44x10 ⁵	~0	1.35	0.48
TRISO	25.41	35.63	7.26x10 ⁵	~0	1.63	0.53

Bathke et al. Methodology Criticism

- Lightbridge, TRISO, and reactor grade Pu all have the same category of material attractiveness
 - Logarithmic nature of the Bathke et al. methodology hides the fact that both Lightbridge and TRISO produce about twice as much heat and spontaneous fission neutrons
- Other factors should be considered
 - TRISO fuel has shells of SiC and carbon in a graphite matrix, making the fuel more difficult to reprocess
 - The mass of plutonium produced by each of these fuels per GWD

Pu composition	Pu (g/GWd)
Reactor - grade Pu	254
Lightbridge	85
TRISO	133

Take Away Message

- TRISO and Lightbridge fuel are significantly different from each other
 - They both have lower attractiveness values than traditional PWR fuel
 - They both produces less plutonium per GWd than traditional PWR fuel
- It is felt by the authors that both TRISO and Lightbridge used fuels have equivalent resistance to weaponization

Acknowledgements

 This work is performed with the support of U.S. Department of Energy's Nuclear Energy University Program (NEUP) with the Award No. DE-NE0009304

Material Attractiveness of Advanced Nuclear Fuels 2023 ANS Winter Meeting (ANTPC 2023), November 12 – 15, 2023 Braden Goddard, Zachary Crouch, Ben Impson, and Zeyun Wu

College of Engineering Mechanical and Nuclear Engineering