Pebble Bed Reactor Neutronics and Isotopic Analysis During Lifetime of a Pebble

Zachary Crouch, Braden Goddard, Zeyun Wu, and Ben Impson

Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering

Pebble Life Cycle

- Pebbles are intended to cycle through the core
- There is a possibility of reusing "spent" pebbles
- Determining viability is difficult without destructive assay

Radiation Spectrum Analysis

- Radiation spectrum analysis, including gamma and neutron radiation can be used to determine pebble isotopics
- Without access to actual "spent" pebbles, analysis can be done with MCNP6 to determine mass at different points in the life cycle

TRISO Fuel Particle Configurations

Material	Density (g/cc)	Radius (cm)
UCO Fuel	10.90	2.13E-02
Buffer	1.00	3.13E-02
PyC1	1.90	3.53E-02
SiC	3.20	3.93E-02
PyC2	1.90	4.28E-02

Variable Material Configurations

Homogeneous

 Center of the pebble is an undifferentiated mixture of TRISO components

Heterogeneous

 Center of the pebble is discretized into individual TRISOs (approximately 19,000)

Variable Geometry Configurations

Face Centered Cubic (FCC)

Single Pebble

VCU College of Engineering

Fresh k-inf (no burnup, 15.5% enriched)

Model	k-inf	Standard Deviation
Single Pebble Homogeneous	1.40254	0.00071
FCC Homogeneous	1.40155	0.00082
Single Pebble Heterogeneous	1.50991	0.00075
FCC Heterogeneous	1.50800	0.00065

Burnup Results

k-inf over time

- Same 15.5% enrichment
- 1304 days at full power
- Burnup accurate to Xe-100 with max 160,000 MWd/MTU

Isotope Comparison, FCC Pebble End of Life

lsotopes in grams	U-235	U-238	Pu-239	Pu-240	Am-241	Cm-244
Homogeneous	2.80x10 ⁻¹	5.43x10 ⁰	1.12x10 ⁻¹	4.63x10 ⁻²	1.42x10 ⁻³	2.83x10 ⁻³
Heterogeneous	1.86x10 ⁻¹	5.62x10 ⁰	5.31x10 ⁻²	3.51x10 ⁻²	5.44x10 ⁻⁴	2.84x10 ⁻³

Conclusions

- Geometry has no statistical impact on k-inf or burnup
- Material configurations have considerable impact, discrete particles are more accurate, seen in increased actinides in homogeneous models

Acknowledgements

 This work is performed with the support of U.S. Department of Energy's Nuclear Energy University Program (NEUP) with the Award No. DE-NE0009304

