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INTRODUCTION 
 

The Physics Informed Neural Network (PINN) can be 
used to approximate a solution to a partial differential 
equation (PDE) by employing a Neural Network (NN) model 
[1]. Applying Automatic Differentiation [2] to a NN model 
with respect to the independent variables allows the PINN to 
be formed by minimizing the residuals of a PDE model and 
satisfying boundary and/or initial conditions. In this way, the 
PINN model can be established to follow physical laws 
without using a traditional training dataset. Additional 
computational advantage of the PINN approach includes its 
ability to obtain a purely mesh-free solution for a non-linear 
PDE without prior assumptions or approximations of the 
unknown; however, the computational cost including the 
time consumed in data sampling process in the approach may 
limit the efficiency of its applications. 

In our previous development, the PINN approach was 
applied to a two-dimensional (2D) two energy group (2G) k-
eigenvalue mode neutron diffusion model [3]. The PINN 
model was used to approximate the solution to the k-
eigenvalue 2G diffusion equations given by 
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where 𝜙௚, 𝐷௚, Σ௔,௚, and Σ௙,௚  (𝑔=1, 2) stand for the flux, the 
diffusion coefficient, the macroscopic absorption cross 
section, and the macroscopic fission cross section of the 
group-𝑔 neutrons, respectively; Σ௦,ଵ→ଶ stands for the 
macroscopic down-scattering cross-section of the fast-group 
neutrons, and Σ௥,ଵ = Σ௔,ଵ+ Σ௦,ଵ→ଶ is the removal cross section 
for the fast group neutrons. The best PINN solution we 
gained, compared to the reference solution provided by the 
high order finite element method, has 0.914% error in k-
eigenvalue, 2.16E-5 and 3.67E-5 mean absolute error in flux 
for the fast and thermal groups respectively. One potential 
computational obstacle that may contribute to these errors is 
the inefficient sampling approach employed in the current 
PINN framework. 

In this work, we focus on improving the computational 
efficiency of the PINN approach by investigating and 
integrating advanced sampling methods into the PINN 
framework. Previously, the PINN model was trained with 
semi-random fixed points in the solution domain generated 
by Latin hypercube sampling (LHS) to ensure the sampling 

points were evenly spaced [3]. The importance sampling (IS) 
method enables new sampling points to be selected for each 
iteration based on some prior sampling distribution. In the IS 
method, the new sampling distribution is weighted based on 
relative contribution to the PDE residual after each training 
iteration. IS has been demonstrated to accelerate the 
convergence of similar PINN models in the application of 
elasticity, diffusion, and plane stress problems [4]. 

 
METHOD 
 
A PINN Framework for k-Eigenvalue Problem 
 

To construct a PINN framework for the 2D 2G neutron 
diffusion model, we first construct a NN model with two 
inputs and two outputs as follows 
 

൤
𝜙ଵ(𝑥. 𝑦)
𝜙ଶ(𝑥. 𝑦)
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In addition to the weights, w, and biases, b, of one standard 
neural network model, we introduce an extra learnable 
parameter, k, to approximate the k-eigenvalue in the PINN 
framework for k-eigenvalue problems. Following this 
consideration in the NN model, we define the PDE residuals 
based on Eq. (1) as follows 
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Next, we sample 𝑁௙ points within the solution domain and 
define a loss function in the form of mean-square of the 
residuals. 
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A similar loss function can be defined for each of the 
boundary conditions. Additionally, a regularization term is 
needed to avoid convergence to the trivial flux solution. 
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where C is a parameter that can be defined in terms of 
physical quantities such as reactor power. The sum of the loss 
function for the residuals, each of the boundary conditions, 
and the regularization term define our total loss. 

 
𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠௙ + 𝑙𝑜𝑠𝑠௕ + 𝑅 .  (6) 

 
The total loss function is used to iteratively update the 
learnable parameters (such as k, w, and b) to minimize the 
loss. This process is continued until the total loss converges 
or a maximum number of iterations is reached. 
 
Importance Sampling Technique 
 

The focus of this work is on the improvement of the 
sampling process required to calculate the loss function. The 
original method used in the PINN model is LHS approach 
mentioned earlier, in which one produces evenly distributed 
semi-random sampling points. Ahead of each training, the 
LHS is performed to create 𝑁௙ sampling points. The residuals 
at these selected points are calculated to form the total loss in 
the PINN training iteration. 

A new sampling method, referred to as importance 
sampling, is employed in this work. The IS method samples 
the solution domain after every iteration following a prior 
distribution, Q, which is determined by each point’s 
contribution to the loss function in the previous iteration. In 
this work, the IS starts with a selection of some number of 
collocation points, 𝑁௖, generated by the LHS method. To 
avoid the computational cost increases in the calculation of 
residuals, we also select 𝑁௦ seed points in the same way. After 
each training iteration we define the sampling distribution Q 
such that the probability of collocation point A being selected 
is equivalent to the nearest seed point’s contribution to the 
total loss for all seed points, that is 
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where 𝑞஺ is the probability of collocation point A being 
selected as a sampling point. The numerator is the magnitude 
of the residual at the seed point closest to point A. The 
denominator is the sum of the residuals at every seed point. 
 
2D k-eigenvalue Diffusion Problem 
 

We demonstrate the improvement in computational 
efficiency from employing the IS method by solving a 2D 2G 
k-eigenvalue diffusion problem with the geometry shown in 
Fig. 1. The two-group material properties in the problem are 
summarized in TABLE I. 

 

 
Fig. 1. Geometry of the 2D k-eigenvalue problem. 

 
TABLE I. Materials properties of the 2D diffusion problem. 
 

 Material 1 Material 2 Material 3 

𝐷ଵ  (cm) 1.2 1.2 1.2 

𝐷ଶ (cm) 0.4 0.4 0.2 

Σ௥,ଵ (cm-1) 0.03 0.03 0.051 

Σ௔,ଶ (cm-1) 0.3 0.25 0.04 

Σ௦,ଵ→ଶ (cm-1) 0.015 0.015 0.05 

𝜈Σ௙,ଵ (cm-1) 0.0075 0.0075 0 

𝜈Σ௙,ଶ (cm-1) 0.45 0.375 0 

 
The boundary conditions of the example problem are as 

follows: zero flux boundaries are imposed on the right and 
top edges, while reflective boundary conditions are assumed 
on the left and bottom sides. These boundary conditions can 
be described by equations. 

 

𝐴𝑡 𝑥 =  0:      
డ

డ௫
 𝜙௚(0, 𝑦) = 0,   (8) 

 

𝐴𝑡 𝑦 =  0:      
డ

డ௫
 𝜙௚(𝑥, 0) = 0,   (9) 

 
𝐴𝑡 𝑥 =  64.26:      𝜙௚(62.46, 𝑦) = 0,   (10) 

 
𝐴𝑡 𝑦 =  64.26:      𝜙௚(𝑥, 62.46) = 0.   (11) 

 
All calculations were performed on the Google 

Collaborations graphics processing unit (GPU) machine. 
This problem is identical to that solved in our previous work, 
however, the NN model used in this work does not include 
the L-BFGS optimizer which was used in previous work to 
reduce the mean absolute error (MAE) of the flux [3]. 
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RESULTS 
 
The problem was firstly solved by using the fixed LHS 

sampling method. This part is essentially a duplication of our 
previous results [3].  Then, the same problem was solved by 
the IS method. The two solutions were then compared in 
terms of accuracy and computational efficiency. For both 
methods, a NN with 8 layers and 40 neurons was used. 
COMSOL Multiphysics was used to obtain a high order finite 
element method (FEM) solution as reference for verification 
[3]. 

For the LHS solution, the solution domain was sampled 
using 15000 points determined by LHS for both the residual 
and regularization loss term. Similarly, 100 points on each 
boundary, sampled by LHS, were used to determine the 
boundary condition loss term. The relative error of the k-eff 
value was 0.733%. The MAE were 2.48E-4 and 3.49E-5 for 
the fast and thermal flux respectively. The total runtime to 
obtain this solution was 107 minutes. The convergence plots 
for k-eff and the loss terms are shown in Fig. 2 and Fig. 3, 
respectively. 

 
Fig. 2. Convergence of k-eff for the LHS Solution. 

 

 
Fig. 3. Convergence of Loss Terms for the LHS Solution. 

 
For the IS solution, we first performed parameter 

optimization testing to determine the optimal number of seed 
points and sampling points to achieve the most efficient 
solution. A 4-layer 5-neuron neural network was used for this 
testing. The number of seeds were varied while the number 
of sampling points were held constant at 1000 sampling 
points. The total runtime results for the first series of tests are 
shown in Table II. 
 

TABLE II. Seed Point Optimization Testing. 
 

NS Run Time (min) 

10 32 

20 30 

50 30 

100 35 

150 34 

200 33 

 
Based on the results shown in Table II, we used 50 seed 

points for the remainder of this work. The number of 
sampling points were then varied while the number of seed 
points were held constant at 50 seed points. The computing 
time results of the new series of tests are shown in Table III. 
Based on these results, we use 1000 sampling points for the 
remainder of this work.  
 

TABLE III. Sampling Point Optimization Testing. 
 

Nf Run Time (min) 

500 32 

1000 30 

2000 34 

3000 32 

4000 35 

5000 37 

6000 39 

 
For the IS implementation, the solution domain was 

sampled using 15000 collocation points and 50 seed points 
determined by LHS. The 1000 sampling points were picked 
from the collocation points by IS method. These sampling 
points were used to determine the residual loss terms and 
were updated every 100 training iterations. The solution 
domain was sampled using 15000 points by LHS to 
determine the regularization loss term. Similarly, 100 points 
on each boundary, sampled by LHS, were used to determine 
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the boundary conditions loss term.  The relative error of the 
k-value was 0.622%. The MAE were 2.54E-4 and 4.85E-5 
for the fast and thermal flux respectively. These error values 
are not significantly different from those obtained by the LHS 
solution. However, the total runtime to obtain this solution 
was 62 minutes, which is considerably reduced compared to 
the LHS method. The convergence plots of k-eff and the loss 
terms for the IS solutions are shown in Fig. 4 and Fig. 5, 
respectively. 

 

 
Fig. 4. Convergence of k-eff for the IS Solution. 

 

 
Fig. 5. Convergence of the Loss Terms for the IS Solution. 

 
CONCLUSIONS 

 
While the IS method did not significantly decrease the 

required number of training iterations, the total runtime 
required to obtain a solution with similar accuracy was 
reduced by 42%. This represents a significant decrease in the 
computational cost of training the NN. This decrease can be 
attributed to the significantly smaller required sample size 
since the NN had to be evaluated at an order of magnitude 

fewer sampling points during each training iteration. 
However, no significant increase in model accuracy was 
achieved by implementing this sampling method. Further, 
when employing IS, it is difficult to determine the loss value 
convergence since selecting new sample points causes the 
loss value to fluctuate between iterations. This fluctuation can 
be observed in Fig. 5. While this work demonstrates a 
significant step in improving the PINN model efficiency, 
future work needs to be pursued to obtain a more accurate 
solution. 
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