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INTRODUCTION
Physics Informed Neural Networks (PINNs) have been successfully
used to estimate the solution of partial differential equations [1]. In our
previous development, the PINN approach was applied to two-
dimensional (2D) two-energy group (2G) k-eigenvalue mode neutron
diffusion models [2]. The PINN model was proved to be capable of
predicting the solution to the eigenvalue 2G diffusion equations
described by Eq.(1) for a problem given geometry and materials shown
in Figure 1. In this work, we focus on improving the computational
efficiency of the PINN approach by investigating and integrating
advanced sampling methods into the PINN framework.

CONCLUSIONS
While the IS method did not significantly decrease the required
number of training iterations, the total runtime required to obtain a
solution with similar accuracy was reduced by 42%. This represents a
significant decrease in the computational cost of training the neural
networks (NN). This decrease can be attributed to the significantly
smaller required sample size since the NN had to be evaluated at an
order of magnitude fewer sampling points during each training
iteration. However, no significant increase in model accuracy was
achieved by implementing this sampling method.

RESULTS
For the LHS case, the relative error of the k-eff value was 0.733%. The
total runtime to obtain this solution was 107 minutes. For the
importance sampling case, the relative error of the k-value was
0.622%. The total runtime to obtain this solution was 62 minutes,
which is considerably reduced compared to the LHS method. The
convergence of the k-eff value is shown in Figure 4 and Figure 5 for
the LHS and IS methods, respectively.
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METHODOLOGY

BACKGROUND
Applying a technique known as automatic differentiation (AD) to
evaluate the partial derivative of the neural network function allows
PINN to be trained to follow physical laws without the use of a
traditional dataset [3]. Instead, by applying AD the PINN can be
trained by sampling the solution domain and minimizing the residual
form of the PDE also known as the residual loss. Previously, the PINN
model was trained with semi-random fixed points in the solution
domain generated by Latin hypercube sampling (LHS) to ensure the
sampling points were evenly spaced [2]. The importance sampling (IS)
method investigated in this work enables new sampling points to be
selected for each iteration based on some prior sampling distribution.
In the IS method, the new sampling distribution is weighted based on
relative contribution to the PDE residual after each training iteration.
IS has been demonstrated to accelerate the convergence of similar
PINN models in the application of elasticity, diffusion, and plane stress
problems [4].

Figure 1. Problem geometry and material properties.

Figure 3. Sampling discretization.Figure 2. Loss minimization.

Figure 5. K-eff convergence for IS.Figure 4. K-eff convergence for LHS.
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