
Automation of Creating High Fidelity TRISO Particle Fuel Element in MCNP Models

Ben Impson, Zachary Crouch, Braden Goddard, Zeyun Wu

Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University,

401 West Main Street, Richmond, Virginia, 23284,

impsonba@vcu.edu, crouchzc@vcu.edu, bgoddard@vcu.edu, zwu@vcu.edu

[leave space for DOI, which will be inserted by ANS]

INTRODUCTION

Pebble Bed Reactors (PBRs) are a type of high

temperature reactor whose fuel and design are compatible

with molten salt and gas cooled reactors, both of which are

part of the generation IV systems currently being developed

under the DOE missions [1]. The concept of a PBR was first

conceived by Dr. Farrington Daniels of Oak Ridge in 1947

with spheres of graphite imbedded with fissile material being

placed in a configuration to sustain a nuclear chain reaction

with coolant passing around the spheres. However, it was not

until 1966 that a prototype reactor would be constructed to

validate Dr. Daniels’ conception. This prototype reactor

operated for 21 years until it was shut down due to

operational problems.

This first prototype PBR was initially fueled using

carbide BISO fuel, however, during the last 5 years of its

operation, TRi-structural ISOtropic (TRISO) fuel was used.

TRISO fuel is a nuclear fuel composed of tiny (~1 mm in

diameter) particles of fissile materials, most frequently

uranium, coated in layers of cladding materials, usually

composed of pyrocarbon and silicon carbide as shown in

Figure 1. Thousands of these TRISO particles are then placed

into a larger pebble, with the space between and around them

being filled with graphite [2]. The considerable amount of

layering between the fissile fuel and the outside of each

pebble is one of the primary benefits of using TRISO fuel

over traditional oxide fuel pellets. The presence of

pyrocarbon and graphite keeps fission products contained,

preventing them from leaking into the coolant. The other

considerable advantage over traditional fuel is its high

durability in the face of high pressures and temperatures.

While the Zircaloy rods used in pressurized water reactors

(PWRs) can only withstand temperatures up to 647 K (374

°C), TRISO fuel is designed to survive upwards of 1800 °C

[3]. This makes TRISO fuel ideal for high temperature gas-

cooled PBRs. TRISO fuel will also not corrode in the same

way Zircaloy will. For reactors like PBRs, this is extremely

important.

From the computational perspective, the high level

heterogeneous geometric setting in both the TRISO fuel

particle and fuel element (e.g., the fuel pebble) in PBR

renders great challenges for modeling and simulation of such

reactors.

Previous work has explored the effect of randomly

packed pebble beds within the reactor, as well as the effect of

randomly distributing the particles throughout the pebble,

although those prior works primarily focused on molten-salt

reactors, not the high temperature gas cooled reactors these

pebbles are intended for in this study [4][5]. This research

builds on this previous work and endeavors to simplify the

process of creating complex input files for radiation transport

codes. This paper summaries a few practical difficulties

arisen in the course of high fidelity modeling the TRISO fuel

pebbles and introduces a computer program based

automation technique as a solution to facilitate and accelerate

the reactor modeling procedure.

Fig 1. Image of an intentionally broken TRISO Particle

revealing the cladding coatings and inner fissile kernel,

approximately 1 mm in diameter. [2]

HIGH FIDELITY TRISO FUEL MODEL

Mapping a Pebble

In order to develop nondestructive assay (NDA)

techniques to determine the amount of fissile material

remaining within the pebble, it is necessary to determine

where the TRISO particles are located throughout the pebble

and how their dispersions effects NDA techniques. This can

be accomplished by using the radiation transport simulations

code Monte Carlo N-particle version 6.2 (MCNP6.2) [6].

While making a repeating lattice structure in MCNP6.2 is

relatively straightforward (see Figure 2), this simplistic

approach creates features that are not present in real pebbles.

mailto:impsonba@vcu.edu
mailto:crouchzc@vcu.edu
mailto:bgoddard@vcu.edu
mailto:zwu@vcu.edu

For instance, particles at the edge of the fuel region of the

pebble would be cut, resulting in fractional particles. Particles

are also perfectly aligned in a lattice grid while in real pebbles

the particles are randomly distributed. These challenges can

be corrected by manually changing geometry parameters in

the MCNP6.2 input deck, although this manual process is

time consuming. To reduce manual monotonous work, a

computer script was written in MATLAB that removes cut

particles and will allow for a more randomized distribution of

particles. For future expanded applications, the script was

then adapted into Python.

Fig 2. Cross-sectional image of a MCNP6.2 model of a

pebble with a simple lattice of TRISO particles showing cut

particles at the edge of the lattice.

Validation of MATLAB Script

An Excel spreadsheet was manually created that would

make the lattice distribution section of an MCNP6.2 input

that did not contain any cut particles. This spreadsheet served

as both validation of the MATLAB script as well as a

template for the output of the MATLAB script to follow. The

script assigns the number ‘1’ for lattice positions with

particles and ‘2’ for lattice positions without particles

(formally cut particles). The script consists of three nested

‘for’ loops, each one tied to x, y, and z coordinates within the

pebble.

Fig. 3. Program Flow Chart

 The MCNP6.2 model has a lattice range from -17 to 17

in each direction, however MATLAB would not accept

negative numbers as indices. As such, the script instead

ranges from 0 to 35, compensating for the perturbation by

subtracting 17 from each x, y, and z value. These corrected

values were then used to calculate the distance from that

position to the edge of the pebble. If the radius was greater

than 2.45625 cm, there would be a ‘2’ placed in the lattice to

represent a lack of a particle. Otherwise, a ‘1’ is placed in

lattice. The eventual output is 35 lattices, each representing a

different level on the z plane. The script exports these lattice

value to a text file (Figure 3), where they are separated by a

‘C’ to allow for better readability. The script also allows rapid

changes to be made to the model itself. As the parameters,

such as the dimensions or how the lattice is broken down, of

the pebble are functionally inputs of the MATLAB script. If

the size of the pebble or the number of TRISO particles

changes, it is easy and quick to input the new parameters into

the MATLAB script and generate a new MCNP6.2 input file.

Each run of the script takes approximately 30 seconds with

the largest variation resulting from larger and larger lattices,

allowing for rapid adjustments and improvements to be made.

Randomly Distributed Particles

The process of adapting the script into Python was aided

by the use of the ChatGPT AI system. While it was not

flawless in its advice, it allowed for much faster progress than

attempting to write a program almost completely from

scratch. Once the original MATLAB output had been fully

recreated using Python, the parameters were modified to

create semi-randomly distributed particles. Python was

selected for this task due to its ease of use and acquisition.

While the Serpent Monte Carlo program is capable of

creating a randomly packed pebble [7], it is export controlled

and more difficult to acquire for some nationalities.

The pitch between the particles in the lattice was reduced

to the diameter of the particles, 0.0855 cm, and the

dimensions of the lattice were increased to be 58 by 58 by 58

cells, resulting in the original diameter of the pebble. The

parameters for particle determination were not changed,

which caused an extremely large number of particles to be

created, far more than the 19,000 that would exist in a normal

pebble. The inflation in particles allowed for a number of

them to be removed from the lattice to reach 19,000. By using

a random number generator and an If-loop in Python, these

removals could result in randomly distributed particles. The

original run of the program creates approximately 100,000

particles, so removing 81% results in an accurate pebble.

When run on an average laptop, this script takes

approximately 15 seconds. Figure 3 shows an MCNP model

cross sectional view of a pebble with the particles randomly

distributed within the lattice.

Fig 3. MCNP model cross sectional view of a pebble with the

particles randomly distributed within the lattice as created by

the Python script.

RESULTS

This process has resulted in a script that allows for rapid

remodeling of a TRISO particle filled pebble. Rather than

needing to manually create spreadsheets, a simple MATLAB

script can complete the task in seconds. It demonstrates that

simple programs can generate complex outputs. Those

outputs can then be used for further examination in MCNP6.2

simulations for eventual assessment of NDA techniques. This

is an essential step in moving towards the end goal of

precisely determining when a pebble no longer contains

sufficient fissile material to be reinserted into the core of a

PBR.

It also demonstrated the benefit of researchers learning

multiple programming languages. While most programming

languages are useful, some are more applicable to certain

tasks than others. For instance, in this research, it would have

taken far longer for the random distribution to be developed

in MATLAB rather than Python.

FUTURE DEVELOPMENT

The next step in this process will be to run burnup

calculations in MCNP6.2 on different distributions of

particles. The effect of different particle locations on the

effective multiplication factor is important for determining

the remaining fuel in a pebble. Both a random and

homogenous model pebble were created in the process of this

research, but these are not the limits of the geometries. There

are plans in place to create models where the particles are

either concentrated in the center of the pebble, or are only

along the edge of the particle. Once these are created, the

effective multiplication factor will be compared for all four

models.

ACKNOWLEDGEMENTS

This work is performed with the support of U.S. Department

of Energy’s Nuclear Energy University Program (NEUP)

with the Award No. DE-NE0009304.

REFERENCES

1. Generation IV Systems, Gen IV International Forum,

Retrieved January 3, 2023, from https://www.gen-

4.org/gif/jcms/c_40465/generation-iv-systems

2. United States Department of Energy, Office of Nuclear

Energy, “TRISO Particles: The Most Robust Nuclear

Fuel on Earth”, July 9, 2019, Retrieved December 20,

2022, from https://www.energy.gov/ne/articles/triso-

particles-most-robust-nuclear-fuel-earth.

3. Loza, P. and Staden, M. V., “Submittal of Xe-100

Topical Report: TRISO-X Pebble Fuel Qualification

Methodology”, X-Energy, Revision 2, (2021)

4. Li, Z., Cao, L., Wu, H., He, Q., and Shen, W., “On the

improvements in neutronics analysis of the unit cell for

the pebble-bed fluoride-salt-cooled high-temperature

reactor,” Progress in Nuclear Energy (2016)
5. Auwerda, G. J., Kloosterman, J. L., Lathouwers, D.,

and Hagen, T. H. J. J. van der, “Effects of random

pebble distribution on the multiplication factor in HTR

pebble bed reactors,” Annals of Nuclear Energy (2010)
6. C.J. Werner, J.S. Bull, C.J. Solomon, et all., “MCNP6.2

Release Notes,” LA-UR-18-20808 (2018)

7. V. Rintala, H. Suikkanen, J. Leppänen, R. Kyrki-

Rajamäki, “Modeling of realistic pebble bed reactor

https://www.gen-4.org/gif/jcms/c_40465/generation-iv-systems
https://www.gen-4.org/gif/jcms/c_40465/generation-iv-systems
https://www.energy.gov/ne/articles/triso-particles-most-robust-nuclear-fuel-earth
https://www.energy.gov/ne/articles/triso-particles-most-robust-nuclear-fuel-earth

geometries using the Serpent Monte Carlo code,”

Annals of Nuclear Energy, vol. 77, pp. 223-230 (2015)

