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INTRODUCTION  

 

Pebble Bed Reactors (PBRs) are a type of high 

temperature reactor whose fuel and design are compatible 

with molten salt and gas cooled reactors, both of which are 

part of the generation IV systems currently being developed 

under the DOE missions [1]. The concept of a PBR was first 

conceived by Dr. Farrington Daniels of Oak Ridge in 1947 

with spheres of graphite imbedded with fissile material being 

placed in a configuration to sustain a nuclear chain reaction 

with coolant passing around the spheres. However, it was not 

until 1966 that a prototype reactor would be constructed to 

validate Dr. Daniels’ conception. This prototype reactor 

operated for 21 years until it was shut down due to 

operational problems.  

This first prototype PBR was initially fueled using 

carbide BISO fuel, however, during the last 5 years of its 

operation, TRi-structural ISOtropic (TRISO) fuel was used. 

TRISO fuel is a nuclear fuel composed of tiny (~1 mm in 

diameter) particles of fissile materials, most frequently 

uranium, coated in layers of cladding materials, usually 

composed of pyrocarbon and silicon carbide as shown in 

Figure 1. Thousands of these TRISO particles are then placed 

into a larger pebble, with the space between and around them 

being filled with graphite [2]. The considerable amount of 

layering between the fissile fuel and the outside of each 

pebble is one of the primary benefits of using TRISO fuel 

over traditional oxide fuel pellets. The presence of 

pyrocarbon and graphite keeps fission products contained, 

preventing them from leaking into the coolant. The other 

considerable advantage over traditional fuel is its high 

durability in the face of high pressures and temperatures. 

While the Zircaloy rods used in pressurized water reactors 

(PWRs) can only withstand temperatures up to 647 K (374 

°C), TRISO fuel is designed to survive upwards of 1800 °C 

[3]. This makes TRISO fuel ideal for high temperature gas-

cooled PBRs. TRISO fuel will also not corrode in the same 

way Zircaloy will. For reactors like PBRs, this is extremely 

important. 

From the computational perspective, the high level 

heterogeneous geometric setting in both the TRISO fuel 

particle and fuel element (e.g., the fuel pebble) in PBR 

renders great challenges for modeling and simulation of such 

reactors.  

Previous work has explored the effect of randomly 

packed pebble beds within the reactor, as well as the effect of 

randomly distributing the particles throughout the pebble, 

although those prior works primarily focused on molten-salt 

reactors, not the high temperature gas cooled reactors these 

pebbles are intended for in this study [4][5]. This research 

builds on this previous work and endeavors to simplify the 

process of creating complex input files for radiation transport 

codes. This paper summaries a few practical difficulties 

arisen in the course of high fidelity modeling the TRISO fuel 

pebbles and introduces a computer program based 

automation technique as a solution to facilitate and accelerate 

the reactor modeling procedure. 

 

 

Fig 1. Image of an intentionally broken TRISO Particle 

revealing the cladding coatings and inner fissile kernel, 

approximately 1 mm in diameter. [2] 

 

HIGH FIDELITY TRISO FUEL MODEL  

 

Mapping a Pebble 

 

In order to develop nondestructive assay (NDA) 

techniques to determine the amount of fissile material 

remaining within the pebble, it is necessary to determine 

where the TRISO particles are located throughout the pebble 

and how their dispersions effects NDA techniques. This can 

be accomplished by using the radiation transport simulations 

code Monte Carlo N-particle version 6.2 (MCNP6.2) [6]. 

While making a repeating lattice structure in MCNP6.2 is 

relatively straightforward (see Figure 2), this simplistic 

approach creates features that are not present in real pebbles. 
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For instance, particles at the edge of the fuel region of the 

pebble would be cut, resulting in fractional particles. Particles 

are also perfectly aligned in a lattice grid while in real pebbles 

the particles are randomly distributed. These challenges can 

be corrected by manually changing geometry parameters in 

the MCNP6.2 input deck, although this manual process is 

time consuming. To reduce manual monotonous work, a 

computer script was written in MATLAB that removes cut 

particles and will allow for a more randomized distribution of 

particles. For future expanded applications, the script was 

then adapted into Python. 

 

 

Fig 2. Cross-sectional image of a MCNP6.2 model of a 

pebble with a simple lattice of TRISO particles showing cut 

particles at the edge of the lattice. 

 

Validation of MATLAB Script 

 

An Excel spreadsheet was manually created that would 

make the lattice distribution section of an MCNP6.2 input 

that did not contain any cut particles. This spreadsheet served 

as both validation of the MATLAB script as well as a 

template for the output of the MATLAB script to follow. The 

script assigns the number ‘1’ for lattice positions with 

particles and ‘2’ for lattice positions without particles 

(formally cut particles). The script consists of three nested 

‘for’ loops, each one tied to x, y, and z coordinates within the 

pebble. 

 

Fig. 3. Program Flow Chart 

 

 The MCNP6.2 model has a lattice range from -17 to 17 

in each direction, however MATLAB would not accept 

negative numbers as indices. As such, the script instead 

ranges from 0 to 35, compensating for the perturbation by 

subtracting 17 from each x, y, and z value. These corrected 

values were then used to calculate the distance from that 

position to the edge of the pebble. If the radius was greater 

than 2.45625 cm, there would be a ‘2’ placed in the lattice to 

represent a lack of a particle. Otherwise, a ‘1’ is placed in 

lattice. The eventual output is 35 lattices, each representing a 

different level on the z plane. The script exports these lattice 

value to a text file (Figure 3), where they are separated by a 

‘C’ to allow for better readability. The script also allows rapid 

changes to be made to the model itself. As the parameters, 

such as the dimensions or how the lattice is broken down, of 

the pebble are functionally inputs of the MATLAB script. If 

the size of the pebble or the number of TRISO particles 

changes, it is easy and quick to input the new parameters into 

the MATLAB script and generate a new MCNP6.2 input file. 

Each run of the script takes approximately 30 seconds with 

the largest variation resulting from larger and larger lattices, 

allowing for rapid adjustments and improvements to be made.  

 

Randomly Distributed Particles 

 

The process of adapting the script into Python was aided 

by the use of the ChatGPT AI system. While it was not 

flawless in its advice, it allowed for much faster progress than 

attempting to write a program almost completely from 

scratch. Once the original MATLAB output had been fully 

recreated using Python, the parameters were modified to 

create semi-randomly distributed particles. Python was 

selected for this task due to its ease of use and acquisition. 



While the Serpent Monte Carlo program is capable of 

creating a randomly packed pebble [7], it is export controlled 

and more difficult to acquire for some nationalities. 

The pitch between the particles in the lattice was reduced 

to the diameter of the particles, 0.0855 cm, and the 

dimensions of the lattice were increased to be 58 by 58 by 58 

cells, resulting in the original diameter of the pebble. The 

parameters for particle determination were not changed, 

which caused an extremely large number of particles to be 

created, far more than the 19,000 that would exist in a normal 

pebble. The inflation in particles allowed for a number of 

them to be removed from the lattice to reach 19,000. By using 

a random number generator and an If-loop in Python, these 

removals could result in randomly distributed particles. The 

original run of the program creates approximately 100,000 

particles, so removing 81% results in an accurate pebble. 

When run on an average laptop, this script takes 

approximately 15 seconds. Figure 3 shows an MCNP model 

cross sectional view of a pebble with the particles randomly 

distributed within the lattice. 

 

 
Fig 3. MCNP model cross sectional view of a pebble with the 

particles randomly distributed within the lattice as created by 

the Python script. 

 

RESULTS  

 

This process has resulted in a script that allows for rapid 

remodeling of a TRISO particle filled pebble. Rather than 

needing to manually create spreadsheets, a simple MATLAB 

script can complete the task in seconds. It demonstrates that 

simple programs can generate complex outputs. Those 

outputs can then be used for further examination in MCNP6.2 

simulations for eventual assessment of NDA techniques. This 

is an essential step in moving towards the end goal of 

precisely determining when a pebble no longer contains 

sufficient fissile material to be reinserted into the core of a 

PBR. 

It also demonstrated the benefit of researchers learning 

multiple programming languages. While most programming 

languages are useful, some are more applicable to certain 

tasks than others. For instance, in this research, it would have 

taken far longer for the random distribution to be developed 

in MATLAB rather than Python. 

 

FUTURE DEVELOPMENT 

 

The next step in this process will be to run burnup 

calculations in MCNP6.2 on different distributions of 

particles. The effect of different particle locations on the 

effective multiplication factor is important for determining 

the remaining fuel in a pebble. Both a random and 

homogenous model pebble were created in the process of this 

research, but these are not the limits of the geometries. There 

are plans in place to create models where the particles are 

either concentrated in the center of the pebble, or are only 

along the edge of the particle. Once these are created, the 

effective multiplication factor will be compared for all four 

models.  
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