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Abstract — In this paper, the physics-informed neural network (PINN) method is investigated and applied 
to nuclear reactor physics calculations with neutron diffusion models. The reactor problems were introduced 
with both fixed-source and eigenvalue modes. For the fixed-source problem, the loosely coupled reactor 
model was solved with the forward PINN approach, and then, the model was used to optimize the neural 
network hyperparameters. For the k-eigenvalue problem, which is unique for reactor calculations, the 
forward PINN approach was modified to expand the capability of solving for both the fundamental 
eigenvalue and the associated eigenfunction. This was achieved by using a free learnable parameter to 
approximate the eigenvalue and a novel regularization technique to exclude null solutions from the PINN 
framework. Both single-energy-group and multiple-energy-group diffusion models were examined in the 
work to demonstrate the PINN capabilities of solving systems of coupled partial differential equations in 
reactor problems. A series of numerical examples was tested to demonstrate the viability of the PINN 
approach. The PINN solution was compared against the finite element method solution for the neutron flux 
and the power iteration solution for the k-eigenvalue. The error in the predicted flux ranged from 0.63% for 
simple fixed-source problems up to about 15% for the two-group k-eigenvalue problem. The deviations in the 
predicted k-eigenvalues from the power iteration solver ranged from 0.13% to 0.92%. These generally 
acceptable results preliminarily justified the feasibility of PINN applications in reactor problems. The 
advantageous application potentials as well as the observable computational deficits of the PINN 
approaches are discussed along with the pilot study.

Keywords — Physics-informed neural network, deep learning, multigroup neutron diffusion equation, 
k-eigenvalue diffusion model.  

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

Modeling a nuclear reactor involves solving 
a system of partial differential equations (PDEs) that 
describes the various phenomena in the reactor core. 
There is no universal PDE solver that can be applied to 
all design and analysis purposes. Conventional numer
ical methods [e.g., the finite element method (FEM)] 

for solving the PDEs are commonly used thanks to their 
rigorous numerical performance. Nevertheless, these 
methods more or less suffer some drawbacks including 
computation complexity, intense manpower efforts, 
need of prior assumptions, and so on. On the other 
hand, data-driven modeling techniques can be compu
tationally effective and relatively easy to implement. 
However, the performance of data-driven methods 
relies on the quantity and quality of the available data, 
which is always a major challenge for disciplines where 
the cost of data acquisition is prohibitive.*E-mail: zwu@vcu.edu
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Theory guided data science (TGDS) is an emerging 
paradigm in data science that aims to provide an alter
native framework for embedding scientific knowledge 
(e.g., PDEs) in data-driven approaches.1 Integrating 
scientific knowledge with data-driven techniques enables 
a new scientific prediction paradigm that allows the gen
eration of physically consistent models while reducing 
the demand for training data. This paradigm fills the 
gap between well-established theoretical approaches and 
data-driven approaches. Within the paradigm, several 
efforts have been made by different research groups to 
develop frameworks for data-driven solving and data- 
driven discovery of PDEs (Refs. 2 through 7).

Compared to the “hard constraint” physics-informed 
neural network (PINN) framework introduced by Lagaris 
et al.2 years ago, the “soft constraint” PINN framework 
recently developed by Raissi et al.3 has lately gained 
wider recognition in the TGDS community. Simply put, 
the PINN approach uses a neural network (NN) to 
approximate the solution of a PDE that can be obtained 
by training the NN model to fit the training data (e.g., 
boundary conditions) while imposing the PDE model on 
the model predictions. The PINN framework is applicable 
for both forward and inverse PDE-based problems. This 
framework relies on recent enhancements in the Machine 
Learning (ML) toolbox, in particular, automatic differen
tiation (AD), to directly tackle general nonlinear PDEs 
without the need for prior assumptions or domain 
discretization.

Generally, NNs can be considered as differentiable 
universal function approximators, which implies a large 
number of computational devices (neurons) arranged in 
successive layers.8 In NN models, a weighted sum of the 
output of each layer is transferred through an activation 
function to the next layer. The NN model can be trained 
to map its input parameters to the target outputs with an 
arbitrary accuracy desired by adjusting the weights and 
biases (learnable parameters) of the weighted sum opera
tion. The training process involves iteratively transferring 
the training inputs through the NN to obtain the outputs, 
which are then compared to the target outputs to compute 
the cost function (loss function). Loss functions are dif
ferentiable functions that measure the mismatch between 
the predicted outputs and the target outputs. The values of 
the loss function and its derivative with respect to the 
learnable parameters are used by means of gradient 
decent to update the weights and biases in the direction 
that minimizes the loss function. The training process 
terminates when a predefined criterion is satisfied. In 
the PINN approach, a physics-informed component is 
added to the loss function. The construction of this 

component is done by first differentiating the NN model 
with respect to its input parameters according to the PDE 
model. The predictions of the physics-informed compo
nent (residuals of the PDE) at some collocation points are 
used as training data to construct the loss function. 
Minimizing the physics-informed component of the loss 
function enforces the predictions to satisfy the PDE 
model.

In their original work, Raissi et al.3 solved two main 
classes, namely, data-driven solution (forward problem) 
and data-driven discovery (inverse problem) of PDEs. 
The forward problem is solved by training on a data set 
of the known data (e.g., boundary and/or initial condi
tions) and a data set of collocation points sampled from 
the solution domain to evaluate the PDE model residuals. 
In the inverse problem, the unknown parameters in 
a parameterized PDE model are extracted from the 
known solution by training on a data set sampled from 
the known solution. For each of the two classes, they 
devised two distinct solution schemes: continuous time 
domain and discrete time domain with implicit Runge- 
Kutta time stepping schemes.

Since the introduction, many continued efforts have 
been made on the subject to resolve various issues 
encountered in the PINN implementations, such as com
putational complexity and uncertainty quantification, and 
to extend the method to various domains. Variations of 
the conventional PINN approach include probabilistic 
PINN for uncertainty quantification,9 arbitrary polyno
mial chaos PINN for solving stochastic differential 
equations,10 conservative PINN for discrete domains,11 

parareal PINN for long-time integration,12 nonlocal PINN 
for integral equations,13 and Bayesian PINN for large- 
noise data scenarios and uncertainty quantification.14 

Various methods have been proposed to reduce the com
putational complexity of the PINN approach including 
adaptive activation functions,15 transfer learning,16 varia
tional PINN with domain decomposition,17 and extreme 
theory of functional connections.18

On the application side, the PINN approach thus far 
has been successfully applied to various science and 
engineering disciplines including fluid dynamics,3,19–21 

quantum mechanics,3 cardiac activation mapping,22 diffu
sion systems,10,23–25 nano-optics and metamaterials,26 

material mechanics,27–29 power systems,30 heat 
transfer,31,32 three-dimensional surfaces,33 subsurface 
transport,34 biological tissues,35 chemical kinetics,36 and 
so on.

Recently, several publications reported applications of 
physics-guided data science in nuclear engineering.37–41 

However, to the authors’ knowledge, at the time of the 
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writing this paper, the PINN has been rarely applied to 
reactor physics calculations besides the preliminary work 
reported by the same research group in recent academic 
conferences.23–25 Very recently, Xie et al.42 used the PINN 
to solve the two-dimensional (2D), one-energy-group, and 
time-dependent diffusion equation for reactors with square 
and circular geometries. Instead of focusing on the physics 
model and methodology, Xie et al.’s work was based on the 
boundary conditions and proposed different approaches 
for treating the boundary conditions, namely, the boundary 
dependent method (BDM) and the boundary independent 
method (BIM). The BDM reached two orders of magni
tude higher accuracy compared to the BIM. In the BDM, 
a trial function is used to give a continuous-symbolic 
solution of the boundary conditions. They also addressed 
the effect of various hyperparameters and activation func
tions on the solution accuracy.

It is well known that the principal model for reactor 
core level calculations is multigroup neutron diffusion 
equations, which essentially can be considered as a set 
of second-order PDEs. In this paper, we make efforts to 
carry out a pilot type of study to assess the feasibility of 
PINN applications in neutronics calculations based on 
multigroup diffusion models. In our previous work,23–25 

we preliminarily demonstrated the applicability of the 
PINN approach for reactor physics problems. We started 
with steady-state, 2D, one-group, fixed-source neutron 
diffusion models23 and then extended the approach to two- 
group (2-G) fixed-source24 and k-eigenvalue problems,25 

respectively. This paper extends these previous efforts and 
gives a systematic presentation of the PINN method to the 
reactor problems in both fixed-source and k-eigenvalue 
modes. For the fixed-source problem, the loosely coupled 
reactor model (LCRM) was solved with the forward PINN 
approach, and then, the model was used to optimize the 
NN hyperparameters. For the k-eigenvalue problem, which 
is unique for reactor calculations, the forward PINN 
approach was modified to expand the capability of solving 
for both the fundamental eigenvalue and the associated 
eigenfunction. This was achieved by using a free learnable 
parameter to approximate the eigenvalue and a novel reg
ularization technique to exclude null solutions from the 
PINN framework. Both single-energy-group and multiple- 
energy-group diffusion models were examined in the work 
to demonstrate the PINN capabilities of solving systems of 
coupled PDEs in reactor problems. A series of numerical 
examples was tested to demonstrate the viability of the 
PINN approach. The PINN solution was compared against 
the FEM solution for the neutron flux and the power 
iteration solution for the k-eigenvalue. This paper thor
oughly discusses the advantageous application potentials 

and the observable computational deficits of the PINN 
approaches in reactor calculations as well as the pilot 
investigation.

The remainder of the paper is organized as follows. 
Section II formulates the theoretical foundations of the 
forward PINN framework and establishes a clear pathway 
to connect the PINN approach to the neutron diffusion 
models. Sections III and IV demonstrate the PINN applica
tions with a series of reactor physics test problems based on 
neutron diffusion theory in both fixed-source and k-eigen
value modes, respectively. These test problems are designed 
purposely from the simplest to the most difficult levels. 
Both single-energy-group and multiple-energy-group mod
els are considered. The last section (Sec. V) offers some 
conclusive remarks and future perspectives to the PINN 
approach on the reactor physics applications based on the 
outcome of the conducted research.

II. PINN METHODOLOGY AND NEUTRON DIFFUSION 
MODELS

In the original paper of Raissi et al.,3 the PINN method 
is classified into two distinct categories: the forward PINN 
method and the inverse PINN method. The first category 
forms a new family of data-efficient solution approximators 
for PDEs while the second category allows the use of 
solution approximators to enable a data-driven discovery 
of the PDEs. For most reactor physics problems, the solu
tion approximators are of priori interest; thus, this work 
focuses only on the forward PINN method in this paper, 
and the inverse PINN is left for future interests.

II.A. Forward PINN Approach

The forward PINN approach develops a NN model to 
approximate the unknown state function that satisfies the 
PDE model and any known values of the function. 
Consider a general nonlinear PDE model as follows:

F :¼ N Y x1; x2; � � � ; xnð Þð Þ ¼ 0 ; ð1Þ

where 

x1; x2; � � � ; xn = independent variables

Y x1; x2; � � � ; xnð Þ = desired state function that satis
fies the PDE model

N = generic nonlinear differential 
operator

F = PDE residuals.
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In this regard, Eq. (1) can be considered as a residual 
formulation of the PDE model.

Within the forward PINN framework, the state func
tion Y x1; x2; � � � ; xnð Þ is approximated by a NN 
net Y x1; x2; � � � ; xnð Þ that takes independent variables 
x1; x2; � � � ; xnð Þ as the input vector and predicts the state 

value at this vector. The NN model is differentiable with 
respect to its input variables. Thus, the residuals of the PDE 
can also be approximated to a NN net F x1; x2; � � � ; xnð Þ by 
differentiating net Y x1; x2; � � � ; xnð Þ according to the origi
nal PDE form, namely,

net F :¼ N net Y x1; x2; � � � ; xnð Þð Þ: ð2Þ

These two NN models, net_Y and net_F, share the same 
learnable parameters. These shared learnable parameters 
can be optimized to meet two goals: Reproduce the 
known values of the state function, and minimize the 
predicted residuals. The optimization goals of the learn
able parameters can be accomplished by minimizing 
a loss function that penalizes the model predictions. The 
loss function generally consists of two terms: One term 
accounts for the mismatch between the predictions and 
the known data (explicit values of the state function), and 
a second term accounts for the predicted residuals 
net F x1; x2; � � � ; xnð Þ. Thus, the physics-informed loss 
function can be defined as

Loss ¼
1

Nb

XNb

i¼1
net Y xi

1; x
i
2; :::x

i
n

� �
� Y xi

1; x
i
2; :::x

i
n

� �� �2

þ
1

Nf

XNf

j¼1
net F xj

1; x
j
2; :::x

j
n

� �h i2
; ð3Þ

where the first term represents the mean-squared error 
(MSE) between the model predictions and the target 
values for a set of Nb training points at which the target 
values are explicitly known (e.g., the boundary or initial 
conditions of the PDE model). The second term in the 
loss function represents the mean-squared value of the 
predicted residuals for a set of Nf training points ran
domly sampled from the solution domain. For a general 
case in which the boundary conditions are given in terms 
of the state function and its derivatives (e.g., Neumann 
boundary condition), the contribution to the first loss term 
will be shown in a similar manner to the residual loss. In 
this case, the loss function can be defined as

Loss ¼
1

Nb

XNb

i¼1
net B x j

1 ; x
j

2 ; :::x
j

n

� �h i2

þ
1

Nf

XNf

j¼1
net F x j

1 ; x
j

2 ; :::x
j

n

� �h i2
; ð4Þ

where net B is the NN predictions for the boundary 
conditions.

Figure 1 depicts the training scheme of the forward 
PINN approach. It also explains the numerical implemen
tation of the forward PINN approach. The training 
scheme starts by defining a training data set for each 
term in the loss function to be evaluated. The NN learn
able parameters (weights and biases) are randomly initi
alized at the starting point. Each training data set is then 
transferred to the NN model to evaluate the correspond
ing residuals function and add it to the total loss. An 
optimization algorithm [e.g., L-BFGS (Ref. 43)] is used 
to iteratively update the NN learnable parameters until 

Fig. 1. Training scheme for the forward PINN approach. 
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the prescribed convergence criteria are achieved to output 
the satisfactory predictions.

II.B. Fixed-Source Diffusion Model

To apply the PINN to reactor problems, the neutron 
diffusion model is used for demonstration. We focus on 
fixed-source problems in this section and extend to 
k-eigenvalue models later. Without loss of generality, 
the PINN methodology is illustrated with a simplified 
one-energy-group 2D diffusion equation described by

�
q

qx
D x; yð Þ

qϕ
qx

� �

þ
q

qy
D x; yð Þ

qϕ
qy

� �� �

þ Σa x; yð Þϕ x; yð Þ � S x; yð Þ ¼ 0;
ð5Þ

where S is the distributed external source, Σais the macro
scopic absorption cross section, and D is the diffusion 
coefficient given by

D ¼
1

3 Σa þ Σsð Þ
; ð6Þ

where Σs is the macroscopic scattering cross section.
To apply the PINN approach to the fixed-source 

diffusion problem, we first construct a NN model to 
approximate the flux distribution of the diffusion equa
tion: net ϕ x; yð Þ � ϕ x; yð Þ. Relying on AD, net ϕ x; yð Þis 
then differentiated based on the PDE model to construct 
the residuals NN net f x; yð Þ as

net f x; yð Þ ¼ �
q

qx
D

qnet ϕ
qx

� �

þ
q

qy
D

qnet ϕ
qy

� �� �

þ Σanet ϕ x; yð Þ � S x; yð Þ: ð7Þ

Similarly, a NN approximator is constructed to the 
boundary conditions at each surface of the system. For 
instance,

net B x; yð Þ ¼
1
4

net ϕ x; yð Þ �
1
2

D
dnet ϕ

dx
; ð8Þ

where a generic Robin type of boundary condition is 
assumed at the boundary surface. Finally, the shared 
learnable parameters of the NN models are trained to 
minimize the loss function:

Loss ¼
1

Nf

XNf

i¼1
net f xi; yið Þ½ �

2

þ
1

Nb

XNb

j¼1
net B xj; yj

� �� �2
þ � � � : ð9Þ

The additional terms in the loss function are constructed 
to approximate the boundary conditions at the remaining 
surfaces. Each of the terms in the loss function is eval
uated using a set of training points sampled from the 
corresponding domain. All training sets can be generated 
using the Latin hypercube sampling (LHS) strategy.44,45

II.C. PINN Approach in Eigenvalue Problems

Eigenvalue problems are quite special and very impor
tant for reactor calculations. For eigenvalue problems, the 
eigenfunction of a general linear differential operator D
may be defined by the nontrivial solution of Eq. (10):

DY x1; x2; � � � ; xnð Þ ¼ λY x1; x2; � � � ; xnð Þ ; ð10Þ

where λ is a scaler. The problem of finding the principal 
eigenvalue and the associated eigenfunction can be 
solved in the PINN framework by considering the resi
duals equation:

F :¼ D Y x1; x2; � � � ; xnð Þð Þ � λY x1; x2; � � � ; xnð Þ

¼ 0:
ð11Þ

Equation (11) is a parameterized PDE with an unknown 
parameter λ. The principal solution of this equation 
ðY x1; x2; � � � ; xnð Þ λ1Þj can be obtained by approximating 
the eigenfunction by a NN model that is restricted to 
predict nontrivial solutions and approximates the princi
pal eigenvalue with a free learnable parameter that can be 
learned from minimizing the PDE residuals. Although in 
theory this approach can converge to any of the eigenso
lutions of the system, the gradient decent optimization 
most likely converges to the fundamental mode. This is 
due to the spectral bias in the fully connected NNs mak
ing these models partially incapable of learning high- 
frequency solutions.46

One unique challenge posed to the PINN application to 
eigenvalue problems is that the obtained solution approx
imators are prone to a trivial solution. In order to eliminate 
convergence to a trivial solution, we introduce an additional 
regularization term to the loss function of the original 
forward PINN approach. The additional regularization 
term is an integral term that enforces a predefined value 
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for the integration of the eigenfunction over its input space. 
The predefined value of the integration can be directly 
related to some physical quantity of interest, or it can be 
simply taken to be one. In the latter case, the predicted 
eigenfunction is normalized over the solution domain. The 
condition for a nontrivial solution can be written as

ò . . . ò Y x1; � � � ; xnð Þdx1 . . . dxn ¼ C ; ð12Þ

where C is the predefined value for the integration. The 
regularization term can be defined as the squared differ
ence between the mean of the predicted values at the 
training points and the target mean as follows:

R ¼
1

Nf

XNf

i¼1
net Y xi

1; x
i
2; :::x

i
n

� �
 !

�
C
Nf

" #2

: ð13Þ

The total loss in the eigenvalue PINN approach is 
defined by

Loss ¼ Lossf þ Lossb þ R: ð14Þ

The training scheme for the PINN approach in eigenvalue 
problems is shown in Fig. 2.

II.D. k-Eigenvalue Diffusion Model

For illustration, the one-group, 2D, k-eigenvalue dif
fusion model is given as

�
q

qx
D

qϕ
qx

� �

þ
q

qy
D

qϕ
qy

� �� �

þ Σa x; yð Þϕ x; yð Þ

¼
1
k

νΣf x; yð Þϕ x; yð Þ ; ð15Þ

where Σf is the macroscopic fission cross section and ν is 
the average number of neutrons emitted per fission. All 
other terms are similar to the ones in Eq. (5).

The most well-known numerical scheme to solve for 
the principal k-eigenvalue in the equation is the power 
iteration method.47 In this approach, the eigenvalue problem 
is literally reduced to the fixed-source problem that is solved 
iteratively by updating the source term in each iteration. 
First, an initial guess of the flux distribution and k is used to 
calculate the source term. The source term is then used as 
a fixed term in the diffusion model, which is to be solved for 
the flux distribution. The calculated flux distribution is then 
used to estimate the value of k and to calculate the source 
term for the next iteration. This process terminates after 
a convergence criterion is achieved. A flow diagram of the 
power iteration scheme applied to the k-eigenvalue diffusion 
problem is shown in Fig. 3. For the sake of verifying the 
PINN solution for this problem, the power iteration scheme 
was implemented and used the FEM integrated in 
COMSOL Multiphysics48 as the flux solver.

The implementation of the PINN approach for 
k-eigenvalue problems starts by defining the NN models 
similarly as discussed earlier. Here, we assume

net ϕ x; yð Þ � ϕ x; yð Þ ð16Þ

and

Fig. 2. Training schematic of PINN for the principal solution of eigenvalue problems. 

606 ELHAREEF and WU · PHYSICS-INFORMED NEURAL NETWORK METHOD AND APPLICATION

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 197 · APRIL 2023



net f x; yð Þ ¼ �
q

qx
D

qnet ϕ
qx

� �

þ
q

qy
D

qnet ϕ
qy

� �� �

þ Σanet ϕ x; yð Þ �
1
k

νΣf net ϕ x; yð Þ: ð17Þ

The NN models for the boundary conditions are identical to 
the fixed-source case while the regularization term is 
defined by

R ¼
1

Nf

XNf

i¼1
net ϕ xi; yið Þ

 !

�
C
Nf

" #2

: ð18Þ

The shared learnable parameters of the NN models are 
learned by minimizing the loss function defined by

Loss ¼
1

Nf

XNf

i¼1
net f xi; yið Þ½ �

2

þ
1

Nb

XNb

j¼1
net B xj; yj

� �� �2
þ R: ð19Þ

II.E. PINN Approach in Multigroup Diffusion Models

In this section, the PINN approach is extended to 
multigroup diffusion models. For illustration, we consider 
the 2-G, k-eigenvalue diffusion equations defined by

� ÑðD1Ñϕ1Þ þ Σr;1ϕ1 ¼
1
k νΣf ;1ϕ1 þ νΣf ;2ϕ2
� �

� Ñ D2Ñϕ2ð Þ þ Σa;2ϕ2 ¼ Σs;1!2ϕ1

�

;

ð20Þ

where 

ϕg, Dg, Σa;g, Σf ;g(g =1, 2) = flux, diffusion coefficient, 
macroscopic absorption cross 
section, and macroscopic fis
sion cross section of the group 
g neutrons, respectively

Σs;1!2 = macroscopic downscattering 
cross section from the fast 
group neutrons to the ther
mal group neutrons

Σr;1 ¼ Σa;1 þ Σs;1!2 = removal cross section for the 
fast group neutrons.

Fig. 3. Power iteration scheme for solving the k-eigenvalue diffusion problem. 
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The PINN approach can be readily applied to the 
2-G diffusion problems by using a NN model with two 
outputs, with each output representing one component of 
the flux. This NN model can then be used to construct 
the residuals of each group equation, and a loss function 
that accounts for the magnitude of the combined resi
duals can be used as a physical constraint on the NN 
predictions in the training phase. Moreover, for the 
k-eigenvalue problems, the fission rate can be used as 
a regularization term to avoid the trivial solution for the 
homogeneous PDEs. For the 2-G case, the total fission 
rate is defined by

fission rate ¼ ò
V

νΣf ;1ϕ1 þ νΣf ;2ϕ2
� �

dV : ð21Þ

By using a predefined value of the fission rate, and 
enforcing this value on the model predictions, the NN 
model is restricted to predict the nonzero-flux distribu
tion. The solution can be learned by minimizing the 
following loss function:

Loss ¼
XNf

i¼1

f1
f2

�
�
�
�

�
�
�
�

2

i
þ
XNb

k¼1

fB1
fB2

�
�
�
�

�
�
�
�

2

k
þ
XNi

j¼1
νΣf ;1ϕ1 þ νΣf ;2ϕ2
� �

j � C

" #2

;

ð22Þ

where 

ϕ1, ϕ2, f1, f2 = NN predictions of fast flux, thermal flux, 
fast flux equation residuals, and thermal 
flux equation residuals

C = predefined value of fission rate

fB = NN predictions of the boundary conditions.

It is worth noting that we have defined the loss func
tion as the sum of residuals instead of the mean of resi
duals. Although this change in the way of defining the loss 
function does not essentially affect the final outcome of the 
learning process, we find that it accelerates the conver
gence of the solution in all test cases. This is due to the 
larger weight put on the residuals of the PDE model 
compared to the other components of the loss function 
(i.e., the boundary conditions and the regularization term).

In the following sections, a series of numerical exam
ples is provided to cover problems of interest in reactor 
physics arranged in ascending order of problem complex
ity. Figure 4 arranges the problems discussed in this work 
into four categories showing the significance of each 
example as a demonstration of PINN applicability to 
reactor physics problems.

III. ONE-GROUP EXAMPLES

The one-energy-group examples discussed in this 
section were presented at recent American Nuclear 

Fig. 4. Summary of the numerical demonstration of PINN for reactor physics problems. 

608 ELHAREEF and WU · PHYSICS-INFORMED NEURAL NETWORK METHOD AND APPLICATION

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 197 · APRIL 2023



Society–sponsored topical meetings.23,25 We briefly 
repeat the results here to offer a complete story of 
PINN applications. After all, the one-group example can 
serve as a leading case to facilitate the PINN extension to 
the multigroup examples that will be discussed in Sec. IV. 
Because of the distinct nature of the governing equations, 
both in this section and in Sec. IV, the numerical exam
ples are categorized into two classes: fixed-source pro
blems and k-eigenvalue problems.

III.A. Fixed-Source Problems

For the fixed-source case, the LCRM problem 
described in the work of Rokrok et al.49 is solved. The 
configuration of the LCRM is shown in Fig. 5. The material 
properties of the essentially two regions are given in Table I.

Zero-incoming fluxes are assumed for all bound
ary surfaces of the problem, which can be expressed 
as a Robin type of boundary condition as follows:

At the surface x = 0: 

1
4

ϕ 0; yð Þ �
1
2

D
dϕ
dx

�
�
�
�
x¼0
¼ 0 ; ð23aÞ

At the surface x = 100: 

1
4

ϕ 100; yð Þ þ
1
2

D
dϕ
dx

�
�
�
�
x¼100

¼ 0 ; ð23bÞ

At the surface y = 0: 

1
4

ϕ x; 0ð Þ �
1
2

D
dϕ
dy

�
�
�
�
y¼0
¼ 0 ; ð23cÞ

At the surface y = 100: 

1
4

ϕ x; 100ð Þ þ
1
2

D
dϕ
dy

�
�
�
�
y¼100

¼ 0: ð23dÞ

To solve the LCRM problem using the PINN approach, 
we use a NN model to approximate the flux distribution: 
net ϕ x; yð Þ � ϕ x; yð Þ. Then, AD is used to differentiate 
net ϕ x; yð Þ according to the PDE model to construct the 
residuals NN net f x; yð Þ:

net f x; yð Þ ¼ �
q

qx
D

qnet ϕ
qx

� �

þ
q

qy
D

qnet ϕ
qy

� �� �

þ Σanet ϕ x; yð Þ � S:
ð24Þ

Similarly, we construct four functions, net_BL(x,y), 
net_BR(x,y), net_BB(x,y), and net_BT(x,y), to evaluate 
the NN predictions for the boundary conditions at the 
system surfaces, where the subscripts L, R, B, and 
T refer to the surfaces: left, right, bottom, and top, 
respectively. For instance,

net BL x; yð Þ ¼
1
4

net ϕ x; yð Þ �
1
2

D
dnet ϕ

dx
: ð25Þ

The shared learnable parameters of the NN models are 
trained to minimize the loss function:

Loss ¼
1

Nf

XNf

i¼1
net f xi; yið Þ½ �

2

þ
1

Nb

XNb

j¼1
net BL xj; yj

� �� �2
þ � � � : ð26Þ

Fig. 5. Geometry of the LCRM problem. 

TABLE I 

Material Properties of the LCRM 

Region 
Material Σa (cm−1) Σs (cm−1) S (n/cm3)

Core 0.062158 0.089302 0.01048083
Blanket 0.064256 0.094853 0.00214231
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Each of the five terms in the loss function was evaluated 
using a set of training points sampled from the corre
sponding domain. All training sets were generated using 
the LHS strategy.

For the application of the PINN to the fixed-source 
example described in Sec. II.B, the tanh function is used as 
the activation function in the NN structure. The NN learnable 
parameters were trained using the Adam optimizer50 for 
a fixed number of iterations (105), and then, the L-BFGS 
(Ref. 43) algorithm was used to complete the training until 
the convergence criterion (the maximum component of the 
loss function gradient is ≤1E-11). TensorFlow 1.0 (Ref. 51) 
software was used to implement all models. We used a high- 
order FEM solution obtained using COMSOL 
Multiphysics48 as the reference solution. The reference solu
tion was averaged to a 100� 100 grid to achieve the point
wise comparison with the PINN predictions.

A systematic parametric study was conducted to 
optimize the NN architecture (number of hidden layers, 
number of neurons per layer) and to understand the 
accuracy of the PINN predictions for different numbers 
of training points (Nf ;NbÞ.

Table II shows the mean relative error in the PINN 
predictions compared with the reference solution for 
a fixed number of training points (Nf ¼ 104;Nb ¼ 25) 
and different NN architectures. Table III shows the 
mean relative error in the PINN predictions compared 
with the reference solution for the fixed architecture (8 
hidden layers and 40 neurons per layer) and different 
numbers of collocation and boundary points.

The results of the systematic study showed that 
increasing the number of hidden layers and/or the num
ber of neurons per layer increases the accuracy of the 
PINN predictions. This result was expected as increas
ing these parameters increases the approximation capa
city of the NN model. Results also showed that the 
PINN prediction accuracy is stable over a wide range 
of training data volumes. Note that the parametric opti
mization procedure is a typical practice for any NN 

method related applications. Throughout this paper, 
only the parameter optimization procedure for this very 
first numerical was detailed as an illustration. For the 
rest of the examples, the optimization was also per
formed, but only the results with the best NN architec
ture were presented.

Based on the findings of the parametric optimiza
tion, the PINN model with 8 hidden layers and 40 
neurons per layer was chosen for the LCRM problem 
(indicated by italic print in Table II). The chosen model 
was trained using 10 000 collocation points and 100 
boundary points per surface (indicated by italic print in 
Table III). The mean relative error for this model is 
0.69%, and the maximum error is 6.9%. Figure 6 
shows the predicted flux net ϕ x; yð Þ and the relative 
percentage pointwise errors compared to the reference 
solutions obtained by the FEM. The convergence curve 
of the loss function for the selected PINN model is 
shown in Fig. 7.

III.B. k-Eigenvalue Problems

For the k-eigenvalue case, we solve the diffusion 
models with two different geometries that are variant 
from the LCRM. The geometric configurations of these 
two problems are shown in Fig. 8. The material properties 
of each region are given in Table IV. We again assume 
zero-incoming fluxes at all boundary surfaces of the 
problem.

For the application of the PINN to the k-eigenvalue 
example described in Sec. II.D, we used the same NN 
architecture, training data set volumes, and optimiza
tion algorithm as the ones in the fixed-source example. 
In the first numerical example, we solve for the con
figuration given in Fig. 8a. The predicted value of 
k ¼ 0:96266, and the power iteration algorithm con
verged at k ¼ 0:96395. The relative percentage error 
in the predicted value is0:13%. Figure 9 shows the 
predicted flux with the pointwise difference between 

TABLE II 

Mean Relative Error Between PINN Prediction and the Reference Solution for Different NN Architectures* 

Neurons 
Layers 10 20 40

2 25.04 11.04 47.69
4 11.24 5.15 1.56
6 2.15 0.79 0.81
8 1.2 0.96 0.73

*Mean relative error is in units of percent. Nf = 10 000 and Nb = 25. 
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the power iteration solution and the PINN predicted 
one. The mean absolute error (MAE) in the predicted 
flux is 2.9E-6. For the second numerical example, we 
solve for the configuration given in Fig. 8b. The pre
dicted value of k ¼ 0:95894; and the power iteration 

algorithm converged atk ¼ 0:96321. The relative error 
in the predicted value is0:44%. Figure 10 shows the 
predicted flux with the pointwise difference between 
the power iteration solution and the PINN predicted 
flux. The lower peak flux at the top right region of 
the core is nearly invisible in the 2D view shown in 
Fig. 10a. The overall MAE in the predicted flux is 
~1.2E-6. These results provide a preliminary justifica
tion of the successful implantation of the PINN 
approach for k-eigenvalue problems. Further justifica
tion is continued in Sec. IV by applying the PINN to 
multigroup diffusion problems.

IV. MULTIGROUP EXAMPLES

To demonstrate PINN applications in the multigroup 
case, several numerical examples are provided, covering 
both one-dimensional (1D) and 2D geometries, as well as 

TABLE III 

Mean Relative Error Between PINN Prediction and the 
Reference Solution for Nf and Nb with Fixed NN Architecture* 

Nf 
Nb 2000 5000 10 000

25 1.06 0.72 0.73
50 0.95 1.04 0.72

100 1.39 0.82 0.69
300 1.13 0.76 0.84

1000 0.91 0.74 0.69

*Mean relative error is in units of percent. Eight hidden layers 
and 40 neurons per layer.* 

Fig. 6. Heat map view of the PINN predicted flux distribution (a) in whole domain and relative percentage error distribution 
compared to the FEM solution (b). 

Fig. 7. Convergence curve of the PINN model for the LCRM. 
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fixed-source and k-eigenvalue problems. For all the test cases, 
we used a common NN architecture that embraced 8 hidden 
layers, 40 neurons per hidden layer, and tanh activation func
tion. We used the Adam optimizer for 105 iterations followed 
by the L-BFGS optimization algorithm for each example. All 
calculations were performed on the Google Collab GPU 
machine.

IV.A. Fixed-Source Problems

IV.A.1. Fixed-Source 1D Homogenous Slab

The fixed-source 2-G diffusion equations may be 
given by

� ÑðD1Ñϕ1Þ þ Σr;1ϕ1 ¼ Q1
� Ñ D2Ñϕ2ð Þ þ Σa;2ϕ2 ¼ Σs;1!2ϕ1 þ Q2

�

; ð27Þ

where Q1 and Q2 represent the fast and neutron source 
strength, respectively. In practice, we may assume that the 
external source existed only in the fast energy range (i.e., 
Q2 ¼ 0). We first solved Eq. (27) for an 80-cm slab subjected 
to a reflection boundary condition on the left side and zero 
flux on the right side. The material properties of the slab are 
given in Table V.

TABLE IV 

Material for the Two Numerical Examples 

Region 
Material Σa (cm−1) D (cm) vΣf (cm−1)

Core 1 0.062158 2.2008 0.107622
Core 2 0.062158 2.2008 0.102622
Blanket 0.064256 2.0950 0.0

Fig. 9. Flux solution for Example 1: (a) heat map of the predicted flux and (b) difference between the reference solution and the 
PINN solution. 

Fig. 8. Geometric configuration of the two k-eigenvalue numerical examples: (a) the configuration of Example 1 and (b) the 
configuration of Example 2. 
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Fig. 10. Flux solution for Example 2: (a) heat map of the predicted flux, (b) difference between the reference solution and PINN 
solution, and (c) predicted log-scale flux plot across the diagonal of the reactor domain. 

TABLE V 

Material Properties of the Fixed-Source Homogenous Slab Example 

D1 (cm) D2 (cm) Σr;1 cm� 1� �
Σa;2 cm� 1� �

Σs;1!2 cm� 1� �
Q1 (cm−3� s−1)

1.2 0.4 0.03 0.1 0.02 1.5
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For the fixed-source problem, the loss function defined in the PINN method does not include a regularization term. The 
significance of this example is that it has the analytical solution given by

ϕ1 xð Þ ¼ Q1
Σr;1

1 �
cosh x=L1

� �

cosh a=L1

� �

0

@

1

A

ϕ2 xð Þ ¼ Q1Σs;1!2
Σr;1Σa;2

1 �
L2

1 cosh x=L1

� �

L2
1� L2

2ð Þ cosh a=L1

� �þ
L2

2 cosh x=L2

� �

L2
2� L2

1ð Þ cosh a=L2

� �

0

@

1

A

8
>>>>>><

>>>>>>:

; ð28Þ

where the diffusion lengths L1 and L2 are given by

L1 ¼

ffiffiffiffiffiffiffi
D1

Σr;1

s

and L2 ¼

ffiffiffiffiffiffiffiffi
D2

Σa;2

s

: ð29Þ

For the PINN implementation, the solution domain was 
sampled using 1000 points generated with the LHS strategy. 
The training time for this simple example is below 1 min. 
A comparison between the analytical and the PINN solution 
for this example is shown in Fig. 11, which clearly shows 
that the PINN obtained nearly identical flux solutions as the 
analytic ones. Two commonly used error metrics, MAE and 
MSE, can be used to have a direct quantitative inspection of 
the results. The MAE and the MSE are defined by

MAE ¼
1
N
XN

i¼1
ϕpred xið Þ � ϕref xið Þ
�
�
�

�
�
� ð30Þ

and

MSE ¼
1
N
XN

i¼1
ϕpred xið Þ � ϕref xið Þ
� �2

; ð31Þ

where ϕpred and ϕref xið Þ are the PINN solution and the 
reference analytic solution at pointxi, respectively. The 
MAE and the MSE for the predicted fast flux are 
0.0043 and 3.599E-5, respectively. The MAE and the 
MSE for the thermal flux are 0.0014 and 2.593E-6, 
respectively. All these results indicate the correct 
implementation of the PINN approach for the 
2-G problem.

IV.A.2. Fixed-Source 1D Heterogeneous Slab

In this example, we solved the fixed-source 
2-G diffusion model for seven 100-cm slabs with three 



types of materials arranged in the 1-2-3-2-3-3-2 manner, 
with each number representing the corresponding material 
type. The properties and volumetric source strength for each 
region are given in Table VI. Both the left and the right sides 
are assumed with the zero-flux boundary condition. This 
example was brought to us through Ref. 52. A FEM solu
tion was used as a reference solution to assess the 

performance of the PINN solution. The comparison of the 
PINN solutions to the reference ones is shown in Fig. 12. 
The MAE and the MSE for the predicted fast flux are 
0.1542 and 0.8403, respectively. The MAE and the MSE 
for the thermal flux are 0.0152 and 0.0037, respectively. All 
these results further justify the accuracy of the PINN solu
tions to the multigroup multiregion problems.

Fig. 11. Comparison between the PINN solution and the analytical solution for the fixed-source homogenous slab problem (flux 
on the left y-axis and error on the right y-axis). 

TABLE VI 

Material Properties for the Fixed-Source Heterogeneous Slab Example 

Material D1 (cm) D2 (cm) Σr;1 (cm−1) Σa;2 (cm−1) Σs;1!2 (cm−1) Q1 (cm−3� s−1)

1 1.2 0.4 0.03 0.1 0.02 0
2 1.2 0.4 0.03 0.2 0.015 1.5
3 1.2 0.4 0.03 0.25 0.015 1.8

614 ELHAREEF and WU · PHYSICS-INFORMED NEURAL NETWORK METHOD AND APPLICATION

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 197 · APRIL 2023



IV.A.3. Fixed-Source 2D Example

For the 2D fixed-source example, we applied the PINN 
approach to the X-Y Cartesian geometry shown in Fig. 13. 
The domain is subject to zero-flux boundary conditions on 
the left and bottom sides, and reflective boundary conditions 
on the right and top boundaries. The material properties of 
the two regions of the problem are given in Table VII. This 
example was brought to us originally through Ref. 53.

For the PINN implementation, the solution domain 
was sampled using Nf ¼ 50000;Nb ¼ 200 per side. 
COMSOL Multiphysics48 was used to obtain a high- 
order FEM for solution verification. The predicted flux 
and the associated error distribution are shown in Fig. 14. 
The MAEs are 2.1382 and 3.9886 for the fast flux and the 
thermal flux, respectively. Considering the average flux 
value for the fast and thermal groups, their MAE values 
are within the 3% and 2% range, respectively.

Fig. 12. Comparison between the PINN solution and the FEM solution for the fixed-source heterogeneous slab problem (flux on 
the left y-axis, and error on the right y-axis). 

Fig. 13. Geometry of the 2D fixed-source problem. 
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IV.B. k-Eigenvalue Problems

IV.B.1. k-Eigenvalue 1D Example

For the multigroup k-eigenvalue problems, we first 
solve the 1D 2-G slab example consisting of three 
regions, and each region is 21.42 cm thick. The material 
properties for each region are given in Table VIII. The 
slab domain is subjected to a reflective boundary 

condition on the left side and a zero-flux boundary con
dition on the right side.

For the PINN solution, we used 1000 points to sam
ple the solution domain and used C ¼ 10 for the regular
ization term. The normalized predicted flux compared to 
a FEM solution is shown in Fig. 15. The predicted 
k-eigenvalue is k ¼ 0:96764; and the reference value is 
0:96243 with a relative error less than 0.54%. For the fast 
flux, the MAE and the MSE in the predictions are 0.0011 
and 1.846E-6, respectively. For the thermal flux, the 
MAE and the MSE are 0.0025 and 1.087E-5, respec
tively. Since all these errors are shown in absolute devia
tions between the PINN predictions to the reference 
solutions, these values are acceptable to some extent. 
The training time for this example is about 30 min. All 
models were trained on the Google Colab GPU 
machine.54

IV.B.2. k-Eigenvalue 2D Example

For the 2D case, we solve the 2D 2-G k-eigenvalue 
diffusion equation for the geometry given by Fig. 16. The 

TABLE VII 

Materials Properties of the 2D Fixed-Source Problem 

Material 1 Material 2

D1 (cm) 1.269 1.31
D2 (cm) 0.9328 0.8695
Σa;1 (cm−1) 7.86E-4 0
Σa;2 (cm−1) 4.1E-3 2.117E-4
Σs;1!2 (cm−1) 7.368E-3 1.018E-2
νΣf ;2 (cm−1) 4.562E-3 0
Q1 (cm−3� s−1) 0.01 0

Fig. 14. Predicted PINN flux and the deviation from the reference solution for the 2D fixed-source problem. 
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left and bottom sides are assumed to be reflective while the 
right and top sides have zero flux. The materials given in 
Table VIII are also used for this example. This example 
was a simplified version of the C5G7 benchmark 
problem.55

We sampled the solution domain using Nf ¼

15000;Nb ¼ 100 per side. We used C ¼ 400 for the regu
larization term. COMSOL Multiphysics was used to obtain 
a high-order FEM solution for solution verification. The 
predicted value of k = 0.93620, and the reference value 
from the FEM solution is 0.92764. The relative error of the 
k value is , 0.92%. The normalized flux and the associated 
error distribution are shown in Fig. 17. The MAEs are 
2.16E-5 and 3.67E-5 for the fast flux and the thermal flux, 
respectively. Considering the average flux value for the fast 
and thermal groups, their MAE values are within the 8% and 
15% range, respectively.

V. SUMMARY AND CONCLUSIONS

In this pilot study, we applied the forward PINN 
approach to solve the neutron diffusion equations for nuclear 

TABLE VIII 

Materials Properties of the k-Eigenvalue 1D Problem 

Material 1 Material 2 Material 3

D1 (cm) 1.2 1.2 1.2
D2 (cm) 0.4 0.4 0.2
Σr;1 (cm−1) 0.03 0.03 0.051
Σa;2 (cm−1) 0.3 0.25 0.04
Σs;1!2 (cm−1) 0.015 0.015 0.05
νΣf ;1 (cm−1) 0.0075 0.0075 0
νΣf ;2 (cm−1) 0.45 0.375 0

Fig. 15. Comparison between the PINN solution and the FEM solution for the 1D k-eigenvalue example (flux on the left y-axis 
and error on the right y-axis). 
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reactor calculations. We started the study by the implementa
tion of the forward PINN approach to solve the fixed-source 
mode one-group diffusion problem. We then modified and 

extended the approach by adding the capability of solving the 
k-eigenvalue mode problem. The methods were then even
tually extended to the 2-G diffusion models.

For the one-group, 2D, steady-state, fixed-source 
diffusion equation with zero-incoming flux boundary 
conditions, we used a simple example with the LCRM 
configuration to demonstrate the feasibility of the PINN 
method and to optimize the NN hyperparameters to be 
applied for the following examples. For the LCRM exam
ple, a systematical parameter study was first performed to 
address the behavior of the PINN for different NN archi
tectures and training point sets. A FEM solution obtained 
from COMSOL Multiphysics was used as the reference 
solution. The mean relative error of the predicted flux 
was ~0.69%. The pointwise relative error was uniformly 
distributed across the solution domain; however, maxi
mum errors were observed to appear mostly at the core- 
blanket interface. These results indicate the successful 
implementation of the PINN approach for fixed-source 
diffusion problems.

Eigenvalue problems are of special importance in 
reactor neutronic calculations, and the conventional 

Fig. 16. Geometry of the 2D k-eigenvalue problem. 

Fig. 17. Predicted PINN flux and the deviation from the reference solution for the 2D k-eigenvalue problem. 
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forward PINN approach is not capable for this class of 
problems. To overcome this limitation, we modified the 
PINN framework to enable the solving capability for the 
principal eigenvalue and the associated eigenfunction. 
This was achieved by first introducing a free learnable 
parameter to approximate the eigenvalue and a novel 
regularization term to enforce a nonzero solution by 
constraining the total fission rate to a user provided 
value. The viability of these ideas was demonstrated 
by solving the k-eigenvalue neutron diffusion equation 
in two different geometries. The solution was compared 
to the result yielded from the conventional power itera
tion solution for error quantification. For the first exam
ple with symmetric geometry and material settings, the 
predicted k-eigenvalue was 0.96266 compared to the 
reference solution 0.96395. The deviation of the PINN 
solution was 0.13% (−129 pcm). For the second exam
ple with nonsymmetric settings, the predicted eigenvalue 
was 0.95894, and the reference value was 0.96321 with 
a deviation of 0.44% (−427 pcm). No further sophisti
cated optimization efforts for the NN solutions were 
pursued, and the PINN estimated k-eigenvalues are 
acceptable at this moment.

We continued the study of the performance of the 
PINN by considering multigroup diffusion problems in 
both fixed-source and k-eigenvalue modes. The PINN 
approach can be naturally extended to solve coupled 
PDEs by devoting an output node for each unknown 
field and constrain it by the corresponding PDE. This 
capability was leveraged for solving the two coupled 
PDEs representing the 2-G neutron balance equations. 
Five numerical examples were examined for this class 
of problems. We started by solving a simple 1D homo
genous fixed-source problem and compared the solution 
to the analytical solution. The MAEs in the PINN solu
tion were 0.0043 and 0.0014 for the fast flux and the 
thermal group flux, respectively. Next, we solved for 
a 1D heterogeneous slab reactor problem with seven 
regions consisting of three different materials. The errors 
in the PINN solution compared to the FEM were 0.1542 
and 0.0152 for fast flux and the thermal flux, respec
tively. The last fixed-source example was a 2D two- 
region test problem. The MAEs were 2.1382 and 3.9886 
for the fast flux and the thermal flux, respectively. 
Finally, we solved two k-eigenvalue problems. The 1D 
example is a heterogeneous slab consisting of two differ
ent fuels and one reflector material. The predicted eigen
value for this example was 0.96764 with the deviation 
from the reference solution of 0.54% (521 pcm). The 2D 
example consisted of five regions containing three differ
ent materials. The predicted eigenvalue was 0.93620 with 

a deviation of 0.92% (856 pcm). All the results from 
these test examples indicate the feasibility of the PINN 
approach for diffusion model–based reactor problems.

Based on the computation experience of these numer
ical examples, we have gained some first-hand under
standing of the PINN approach on practical engineering 
applications. The PINN method apparently offers many 
calculation advantages over conventional numerical 
methods. Some of these advantages are summarized as 
follows:

1. It generates purely continuous and mesh-free 
solutions, which offers great flexibility for numerical 
solutions because rigorous mesh generation itself could 
be a big manpower burden for conventional numerical 
methods such as the FEM.

2. It precludes the need for special treatment for the 
boundary conditions or material interface, which also 
gives much convenience in the implementation of PDE- 
type problems.

3. It is readily applicable to complex geometries 
and versatile boundary conditions with very little sacri
fice to the accuracy.

4. For eigenvalue problems, as demonstrated by the 
examples, it eliminates the iteration-based convergence 
scheme and greatly simplifies the solution procedure, 
which reduces the manpower needed to develop the con
ventional methods–based solvers.

5. It also holds the merit of being capable of sol
ving coupled systems of PDEs, which makes it a good 
candidate for Multiphysics solvers, which are at the heart 
of the advanced nuclear reactor design process.

Given the above-mentioned advantages, the PINN suf
fers from some inherent drawbacks including the computa
tion complexity, the different convergence rates for the 
various components of the loss function, and the possibility 
of convergence to a local minimum resulting in large error in 
the predicted solutions. All these drawbacks are related to the 
optimization algorithm, which searches for the optimum 
learnable parameters that minimize the loss function.

Since the main purpose of this paper was to demon
strate the feasibility of the PINN for reactor problems, 
much less attention was paid to the aspect of PINN 
optimization at this time. For future work, we are tackling 
PINN solution accuracy and efficiency by considering 
recent developments in this approach including optimiz
ing the sampling strategy, using adaptive activation func
tions, applying the dynamic weighting of the loss 
function, and examining advanced NN architectures and 
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PINN variations. Following this optimization phase, we 
are considering expanding this framework to the 
Multiphysics domain by coupling the neutron diffusion 
equations with the thermal-hydraulic equation to develop 
a solver capable of tackling problems for the advanced 
reactor designs. We are also aiming to conduct 
a systematic study for the effect of dominance ratio on 
eigenvalue PINN solutions.
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