

Preliminary Fuel Cycle Analysis of the -UB₂ Composite Fuels in **Pressurized Water Reactors**

Zeyun Wu, Ph.D., Assistant Professor Department of Mechanical and Nuclear Engineering Virginia Commonwealth University, Richmond VA

ANS Annual Meeting, Anaheim CA, June 14th, 2022

Acknowledgement

<u>Dr. Cihang Lu</u>, former postdoc at VCU and coauthor of this paper, conducted the computational modeling and performed most of the calculations in this work. Cihang now is a Nuclear Engineer at the <u>Brookhaven National</u> <u>Laboratory</u>.

Burnable Absorbers (BA)

- BA is a common approach employed in LWRs to hold down the <u>excess reactivity</u>.
- Boron is commonly employed as BA in forms of soluble boric acid dissolved in PWR coolant.
- Two alternative boron based solid BAs recently invented by <u>Westinghouse</u>:
 - Wet Annular Burnable Absorber (WABA): annular pellets of alumina-boron carbide (Al₂O₃-B₄C) contained within two concentric Zircaloy-4 tubes
 - Integral Fuel Burnable Absorber (IFBA): coatings of thin layers of zirconium diboride (ZrB₂) over the outer surfaces of the conventional UO₂ fuel pellets

Department of Mechanical & Nuclear Engineering

Limitations

WABA

BA rods displace fuel rods from the fuel assembly, which results in reduced heavy metal (HM) loading and shorter fuel cycles.

IFBA

- Adding a coating material to the surface of the fuel rod inevitability worsens the heat transfer between the fuel and the coolant, which results in a higher fuel center-line temperature.
- The coating may lead to early burn out of the BA and induce undesirable reactivity peaks, which also increases the fuel temperature

A Potential Solution - UB₂ Composite Fuels

Novel <u>composite</u> fuels with <u>uranium diboride</u> (UB_2) as the secondary phase improve the safety and the economic performances of PWRs

- These composite fuels have <u>higher thermal conductivities</u> than the conventional UO₂ fuel, which limits the fuel temperature.
- With BA more distributed in fuel rods, instead of several dedicated BA rods, the composite fuel <u>decreases the power peaking factor</u>, and thereby the peak fuel temperature.
- The use of these composite fuels <u>avoids the potential early burnout</u> of the BA coatings, which offers potentially longer fuel cycles.

Objectives of this Study

Analyze the neutronically economic viability of

- UO₂-UB₂,
- U_3Si_2 -UB₂, and
- UN-UB₂

high g-U/cm³ composite fuels via standard fuel cycle analyses in PWRs.

<u>Note</u>: because no production of the $UN-UB_2$ composite has been reported at the time of writing the summary, this work also makes suggestions for the focus of potential future experiments on $UN-UB_2$.

PWR Fuel Assembly (Neutronics Model)

The Westinghouse's AP1000 reactor was considered as the reference design in this work, and the 17 x 17 fuel assembly was modeled via <u>Serpent</u> according to its specifications

Parameter	Value
Array size (-)	17 x 17
Number of fuel rods (-)	264
Number of guide/instrument tubes (-)	25
Power density (MW/MTU)	40.2
Rod pitch (cm)	1.26
Assembly pitch (cm)	21.522
Cladding outside radius (cm)	0.475
Gas gap outside radius (cm)	0.4178
Pellet outside radius (cm)	0.4096
Guide/instrument tube outside radius (cm)	0.6121
 Guide/instrument tube inside radius (cm)	0.5715

& Nuclear Engineering

2-D Serpent model of the 17×17 fuel assembly

8

Reference Case – IFBA Assembly

Loading pattern of the 156 IFBA rods.

- Loading patterns with various numbers of IFBA rods were modeled as the bounding cases in the study
- Natural boron was considered for both the soluble boric acid and the ZrB₂ coating of the IFBA rods
- Assumed 1.57 mg/inch of ¹⁰B in the IFBA rods, where the thickness of the ZrB₂ coating was 0.000508 cm
- Assumed initial ²³⁵U enrichment as 3.4 wt.% for the assembly

Impact on k_∞ and Fuel Cycle Length

All the three composite fuels were able to increase the fuel cycle length of the 0-IFBA-rods assembly when employing 100% enriched ¹¹B and ¹⁵N (absorption free isotopes).

Fuel type	EFPD	+	HM loading (g)	+
0-IFBA	556	-	1254	-
UO_2 - UB_2	597	7%	1323	5%
U_3Si_2 - UB_2	675	21%	1479	18%
UN-UB ₂	782	41%	1680	34%

Summary of fuel cycle length and HM loading

They are also capable to function similarly to the 156-IFBA-rods assemblies for the holding down of the initial excess reactivity.

 k_{\circ} vs EFPD of the various composite fuels

Understanding the Physics

- Natural Boron
 - B-10: 19.9 at.%
 - B-11: 80.1 at.%
- Natural Nitrogen
 - N-14: 99.6 at.%
 - N-15: 0.4 at.%
- B-11 and N-15 have insignificant cross section for neutron absorption in energy < 10 MeV</p>

Nuclear data are from the IAEA NDS website based on ENDF/VIII.

Impact of the ¹⁰B Concentration on k_{∞}

12

Impact of the ¹⁴N Concentration on k_{∞}

Summary

- All the calculations in this work were performed by assuming 30 wt.% of the UB₂ phase in the composite fuels.
- > A significant amount of UB_2 is required in the UO_2 - UB_2 composite to achieve a higher HM loading for an extended fuel cycle length.
- \succ UB₂ is added to U₃Si₂ and UN primarily to make them less reactant with high-pressure steam, rather than to increase the HM loading.
- In future work, the minimum amount of UB₂ required to adequately mitigate the UN-steam reaction should be experimentally determined.

Thanks & Questions?

Preliminary Fuel Cycle Analysis of the -UB₂ Composite Fuels in Pressurized Water Reactors

Zeyun Wu, Ph.D., Assistant Professor Department of Mechanical and Nuclear Engineering Virginia Commonwealth University, Richmond VA

ANS Annual Meeting, Anaheim CA, June 14th, 2022