College of Engineering

A Multiphysics Framework to Characterize Fuel Bowing Effects in PWRs

Yue Zou*, Zeyun Wu

Depart. of Mech. and Nuclear Engineer Virginia Commonwealth University Richmond, VA

> ANS Annual Meeting, Anaheim, CA June 12 – 16, 2022

*Yue Zou is the same time a senior nuclear engineer at Dominion Energy

U.S. Operating Nuclear Plants

U.S. Operating Commercial Nuclear Power Reactors

- Millstone (CT)
- North Anna (VA)
- Surry (VA)
- V.C. Summer (SC)

Reference link: https://www.nrc.gov/reactors/operating/map-power-reactors.html

Fuel Bowing in PWRs - Overview

- One of the major nuclear fuel performance issues
- Widely observed in PWR operations
- Few modeling work in the literature, especially with fuel rod bow
- A <u>multiphysics</u> phenomenon encompassing neutronics, mechanics, and thermal hydraulics
 - How do these parameter affect one another?
 - Are there any feedback effects?
 - What can we do to benefit operations?

A phenomenon known as lateral deflections from the normal positions of the nuclear fuel structures during normal operating conditions, as a result of reactor core thermal gradient, flow conditions, and irradiation creep.

Roberts (1981), Structural Material in Nuclear Power Systems

Photo showing a bowed fuel assembly

Franzen (2017), Evaluation of Fuel Assembly Bow Penalty Peaking Factors for **Ringhals 3**

Fuel Rod vs. Assembly Bow - Differences

- □ Fuel rod vs. Assembly (GT+Grid+FR)
- Axial loading: friction forces vs. hold-down forces
- Constrained between grids vs. top and bottom tie-plates
- Bowing at each span between grids with Max deflection at mid-span elevations vs. bowing between tieplates with max deflections at grid elevations

A Schematic Illustration of Fuel Rod and Fuel Assembly Bowing Configuration

Fuel Rod vs. Assembly Bow - Similarities

Schematic illustration of fuel rod and assembly bowing.

- Lateral deflections under compressive axial loading
- Time-dependent behavior involving irradiation growth, creep, relaxation etc.
- Multiphysics phenomenon concerning structural, thermal hydraulic, and neutronic aspects

Fuel Structural Behavior

Wanninger et al (2018), "Mechanical Analysis of A Row of Fuel Assemblies in A PWR Core", Nuclear Engineering and Technology, 50: 297 - 305

7

Thermal Hydraulics Behavior

Circumferential Temperature Distribution

- 37-Rod Bundle Hex Lattice
- Monel sheathed epoxy rod
- Infrared pyrometer

Periodical temperature distribution around the circumference

- Lattice type
- Pitch-to-diameter (*P*/*D*)

More pronounced in tight lattice

Krauss & Meyer (1998), "Experimental Investigation of Turbulent Transport in a Heated Rod Bundle", Nuclear Engineering and Design, 180: 185 - 206

Motivation and Objectives

Difficulties in predicting the bowing behavior:

- Variations in core and fuel designs
- Lack of measurements
- Complicated operating conditions with various contributors/uncertainties
- Literature work:
 - Focused primarily on thermal-hydraulics effects (e.g., CHF)
- Goals and benefits of this work:
 - Capture more precise local effects
 - Develop a framework that is applicable to similar issues
 - Fundamental understanding on **sensitivities/uncertainties** of different factors

Multiphysics Framework

- Three subjects affect one another, starting from a structural deformation, forming a loop
- Every two subjects interact with each other
- How sensitive are these effects, and is there any feedback effect? How significant?

eae of Enaineerina

Thermal Hydraulics Modeling – CFD

Two-Rod CFD Model (ANSYS Fluent)

Model Setup

- Incompressible Newtonian flow ۰
- Steady-state, conjugate heat transfer
- $k \varepsilon$ turbulence model •
- Inlet temperature: 530 K •
- Inlet velocity: 2.35 m/s ٠
- Uniform volumetric heating rate: • 372 W/cm³

Fuel Rod Temperature Distribution

Fuel Rod Temperature Contour at Mid-span Elevation

VCU College of Engineering

Circumferential Temperature Distribution

As the rod displaces towards its neighboring rod, temperature increases at the gap closure side, while decreases at the opposite side, forming a thermal gradient in the transverse direction that leads to further deformation.

Neutronics Modeling – Monte Carlo

3X3 Rod Bundle Model (MCNP 6.2)

Top View

Side View

Consider the center rod displaced towards neighboring rod

Model Setup

- Reflective boundary conditions
- Water coolant
- Fresh Uranium ²³⁵ fuel
- Neglecting cladding and gap

A slight increase of k_{eff} value is noticed at 90% gap closure, $\delta k_{eff} = 0.00040$ with a standard deviation of 0.00017. Local effect in power distribution to be investigated.

Summary

- A Multi-physics framework is proposed to the structural-T/H-neutronics problem, particularly for the PWRs and may be extended to other applications;
- A geometric perturbation by displacing a fuel rod in a square lattice is considered, using CFD and Monte Carlo simulations;
- Fuel rod wall temperature increases as the flow area reduces, forming a thermal gradient in the transverse direction. This can lead to further deformation;
- □ Monte Carlo simulation suggests insignificant neutronics effect.

Future Work

Structural – Thermal Hydraulics:

- □ Understand the impact of single rod spacing to flow and temperature distribution
- Understand the sensitivity of such impact and incorporate the deflections from the structural model to check the feedback effect

Structural – Neutronics:

Understand the impact of single rod spacing to power distribution, both in-plane and axially

Thermal Hydraulics – Neutronics:

 Understand the impact of the temperature distribution on power re-distribution (and vice versa)

Validation of modeling results:

- **D** Experimental measurements that are available
- Alternative modeling results available in literature

Thank You & Questions?

A Multiphysics Framework to Characterize Fuel Bowing Effects in PWRs

