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Outline

• Introduction of PINN
• 1G Fixed-source Diffusion Model (M&C 2021)
• 2G Fixed-source Diffusion Model

– One Dimensional (1D) Examples
– Two Dimensional (2D) Examples

• Future Work and Conclusions
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Physics-Informed Neural Networks (PINN)

• Provides a framework for integrating physics principles 
within data-driven models

• Solves two classes of problems:
1. Data-driven solution of PDEs (Forward approach)
2. Data-driven discovery of PDEs (Inverse approach)

• Successfully applied to various engineering problems:
Fluids, Quantum Mechanics, Power Systems, etc. 
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Ref.: M. Raissi et al., “Physics-informed neural networks: A deep learning framework for solving forward and inverse 
problems involving nonlinear partial differential equations,” Journal of Computational Physics, 378, pp. 686-707 (2019). 



Standard Feed-forward Neural Networks

• Universal function approximators

• Automatic differentiation (AD)
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Forward PINN Framework
The PINN approach uses the neural networks (NN) model to 
approximate the solution of PDEs:
• Considering a general non-linear differential operator: 

𝐹𝐹: = ℕ 𝑌𝑌 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛 = 0
• The solution can be approximated to a NN model: 

𝑌𝑌 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛 ≅ 𝑛𝑛𝑛𝑛𝑡𝑡_𝑌𝑌 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛
• The PDE model can be constructed as:

𝑛𝑛𝑛𝑛𝑡𝑡_𝐹𝐹: = ℕ 𝑛𝑛𝑛𝑛𝑡𝑡_𝑌𝑌 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛 ≅ 0
• The shared learnable parameters can be learned by restricting the 

predictions of (net_F) to zero
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Forward PINN Framework (Cont.)
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PINN Training Scheme
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Boundary Conditions Neutron Balance
(i.e., physics principle)



1G Fixed-source Diffusion Model
• The 1G 2D steady state diffusion equation:

• Zero-incoming fluxes are assumed for all 
boundary surfaces:
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Geometry of  one-group example

𝑭𝑭 ≔ −𝜵𝜵 � 𝑫𝑫 𝒙𝒙,𝒚𝒚 𝜵𝜵𝝓𝝓 𝒙𝒙,𝒚𝒚
+𝜮𝜮𝒂𝒂(𝒙𝒙,𝒚𝒚)𝝓𝝓(𝒙𝒙,𝒚𝒚) − 𝑺𝑺(𝒙𝒙,𝒚𝒚) = 𝟎𝟎

For exmaple, at the surface 𝑥𝑥 = 0:

𝟏𝟏
𝟒𝟒
𝝓𝝓(𝟎𝟎,𝒚𝒚) − 𝟏𝟏

𝟐𝟐
𝑫𝑫 �𝒅𝒅𝝓𝝓

𝒅𝒅𝒙𝒙 𝒙𝒙=𝟎𝟎
= 𝟎𝟎

Region Material 𝛴𝛴𝑎𝑎 (cm-1) 𝛴𝛴𝒔𝒔 (cm-1) S (n/cm3)

Core 0.062158 0.089302 0.01048083

Blanket 0.064256 0.094853 0.00214231



1G Model - Implementation Details

• LHS strategy was used to generate training points
• Adam optimizer was used to minimize the loss function
• A high-order FEM solution was used as a reference solution
• PINN optimum hyperparameters (after optimization)
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# of hidden layers # of neurons/layer Nf Nb/surface

8 40 10,000 100

The optimum hyperparameters are shown below with mean percentage 
relative error of 0.69% and maximum error of 6.9% in flux solution.



1G Model - Results
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PINN predicted flux distribution (a) and relative percentage 

error distribution compared to the FEM solution (b).

Predicted flux and percentage relative error along the 
diagonal line.

Relative percentage error

Mean 0.69%

Std. 0.74

Max 6.9%



2G Fixed-source Diffusion Model

• Why it’s different?
 Joint learning task
 Generally multi-scale optimization problem
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�
�𝑓𝑓1 ≔ −𝛻𝛻(𝐷𝐷1𝛻𝛻𝜙𝜙1 + 𝛴𝛴𝑟𝑟,1𝜙𝜙1 − 𝜈𝜈𝛴𝛴𝑓𝑓,2𝜙𝜙2 − 𝑄𝑄1 = 0

𝑓𝑓2 ≔ −𝛻𝛻 𝐷𝐷2𝛻𝛻𝜙𝜙2 + 𝛴𝛴𝑎𝑎,2𝜙𝜙2 − 𝛴𝛴𝑠𝑠,1→2𝜙𝜙1 = 0

𝜙𝜙1 𝑥𝑥,𝑦𝑦
𝜙𝜙2 𝑥𝑥,𝑦𝑦 = 𝑁𝑁𝑁𝑁 𝑥𝑥,𝑦𝑦
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𝑗𝑗=1
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Boundary Conditions Neutron Balance



2G1D Exemple - Homogenous Slab
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• A 80-cm thick slab is composed of a 
single material.

• BCs:
 Reflective BC on left
 Zero-flux BC on right

• MAE results:
 Fast flux: 4.3E-3
 Thermal flux: 1.4E-3

𝐷𝐷1
(cm)

𝐷𝐷2
(cm)

𝛴𝛴𝑟𝑟,1
(cm−1)

𝛴𝛴𝑎𝑎,2
(cm−1)

𝛴𝛴𝑠𝑠,1→2
(cm−1)

𝑄𝑄1
(cm−3s−1)

1.2 0.4 0.03 0.1 0.02 1.5



2G1D Exemple – Heterogeneous Slab
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• Seven 100-cm thick assemblies
• Material arrangement: 1-2-3-2-3-3-2
• BCs:

 Zero-flux BC for both sides

• MAE results:
 Fast flux: 1.54E-1
 Thermal flux: 1.52E-2

Materials 
𝐷𝐷1

(cm)
𝐷𝐷2

(cm)
𝛴𝛴𝑟𝑟,1

(cm−1)
𝛴𝛴𝑎𝑎,2

(cm−1)
𝛴𝛴𝑠𝑠,1→2

(cm−1)
𝑄𝑄1

(cm−3s−1)
1 1.2 0.4 0.03 0.1 0.02 0
2 1.2 0.4 0.03 0.2 0.015 1.5
3 1.2 0.4 0.03 0.25 0.015 1.8
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2G2D Exemple – Problem Description

Material 1 Material 2

𝑫𝑫𝟏𝟏 [ 𝐜𝐜𝐜𝐜] 1.269 1.31

𝑫𝑫𝟐𝟐 [𝐜𝐜𝐜𝐜] 0.9328 0.8695

𝜮𝜮𝐚𝐚,𝟏𝟏 [𝒄𝒄𝒄𝒄−𝟏𝟏] 7.86E-4 0

𝜮𝜮𝐚𝐚,𝟐𝟐 [ 𝒄𝒄𝒄𝒄−𝟏𝟏] 4.1E-3 2.117E-4

𝜮𝜮𝐋𝐋,𝟏𝟏→𝟐𝟐 [𝒄𝒄𝒄𝒄−𝟏𝟏] 7.368E-3 1.018E-2

𝛎𝛎𝜮𝜮𝐟𝐟,𝟐𝟐 [ 𝒄𝒄𝒄𝒄−𝟏𝟏] 4.562E-3 0

𝑸𝑸𝟏𝟏 [ 𝒄𝒄𝒄𝒄−𝟑𝟑𝒔𝒔−𝟏𝟏] 0.01 0

BCs:
 Reflective BC on right & top
 Zero-flux BC on left & bottom
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2G2D Exemple – Flux Distribution

• MAE results:
 Fast flux: 2.13
 Thermal flux: 3.98

• Considering the average 
flux value for the fast and 
thermal groups, the relative 
error values are within the 
3% and 2% range, 
respectively



Future Work
• Multigroup (G>2) Challenges

– Operator stiffness 
– Computational cost

• k-eigenvalue Problem Challenges

‒ Parametric equation (unknown k)
‒ Homogenous (Direct minimization of F results in 𝜙𝜙 𝑥𝑥,𝑦𝑦 = 0 )

17

F≔ 𝟏𝟏
𝒌𝒌
𝝂𝝂𝜮𝜮𝒇𝒇 𝒙𝒙,𝒚𝒚 𝝓𝝓 𝒙𝒙,𝒚𝒚 + 𝛛𝛛

𝛛𝛛𝒙𝒙
𝑫𝑫 𝛛𝛛𝝓𝝓

𝛛𝛛𝒙𝒙
+ 𝛛𝛛

𝛛𝛛𝒚𝒚
𝑫𝑫 𝛛𝛛𝝓𝝓

𝛛𝛛𝒚𝒚
− 𝜮𝜮𝒂𝒂 𝒙𝒙,𝒚𝒚 𝝓𝝓 𝒙𝒙,𝒚𝒚 = 𝟎𝟎



Conclusions
• Advantages:

1. Obtain mesh-free solutions
2. No large amount of training data needed ahead
3. Achieve the same level of accuracy as conventional methods.
4. Manpower efforts for the PINN can be significantly reduced.

• Challenges:
1. Computational complexity
2. Applications to higher dimensionality problems
3. Multi-scale optimization
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