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INTRODUCTION 

Physics Informed Neural Network (PINN) [1] is an 
advanced data science technique for solving partial 
differential equations (PDE) by employing a Neural Network 
(NN) model to approximate the solution. PINN approach 
takes advantage of the recent development in Machine 
Learning (ML) toolbox and applies Automatic 
Differentiation (AD) approach [2] on the NN model with 
respect to the independent variables to construct a PINN 
model based on the residuals of the PDE model. The shared 
learnable parameters between the two models are learnt by 
minimizing the PDE residuals within the solution domain and 
satisfying the boundary and/or initial conditions of the PDE. 
In this view, the physical laws are integrated in the PINN 
framework as a constraint on the model outputs.  

PINN was successfully applied to various scientific and 
engineering applications. The overarching advantage of 
PINN is its capability of obtaining mesh-free solution for 
nonlinear PDE without any prior assumptions or 
approximation to the unknowns. One drawback of PINN is 
the computational complexity of the problems especially for 
high-dimensional systems may limit its applications. 

In the previous work [3, 4], we adopted the PINN for the 
neutron-diffusion models for nuclear reactor applications. 
We started by solving the steady state two dimensional (2D), 
one energy group (1G), fixed source diffusion model for the 
Loosely-Coupled Reactor Model (LCRM) [3]. We then 
extended the PINN model to the k-eigenvalue mode diffusion 
model [4]. In this work we are extending PINN diffusion 
model to the two group (2G) cases. In particular, we are 
solving the fixed-source 2G diffusion equations defined by: 

�
−𝛻𝛻(𝐷𝐷1𝛻𝛻𝜙𝜙1) + 𝛴𝛴𝑟𝑟,1𝜙𝜙1 = 𝜈𝜈𝛴𝛴𝑓𝑓,2𝜙𝜙2 + 𝑄𝑄1
−𝛻𝛻(𝐷𝐷2𝛻𝛻𝜙𝜙2) + 𝛴𝛴𝑎𝑎,2𝜙𝜙2 = 𝛴𝛴𝑠𝑠,1→2𝜙𝜙1    ,                 (1) 

where 𝜙𝜙𝑔𝑔, 𝐷𝐷𝑔𝑔, 𝛴𝛴𝑎𝑎,𝑔𝑔, and 𝛴𝛴𝑓𝑓,𝑔𝑔 (𝑔𝑔=1, 2) stand for the flux, the 
diffusion coefficient, the macroscopic absorption cross 
section, and the macroscopic fission cross section of the 
group- 𝑔𝑔  neutrons, respectively; 𝛴𝛴𝑠𝑠,1→2  stands for the 
macroscopic down-scattering cross-section of the fast-group 
neutrons, and 𝛴𝛴𝑟𝑟,1 = 𝛴𝛴𝑎𝑎,1 + 𝛴𝛴𝑠𝑠,1→2  is the removal cross 
section for the fast group neutrons, and 𝑄𝑄1  is the fixed 
neutron source, representing the fast neutrons generated from 
fission.  

We demonstrate the applicability of PINN to the fixed-
source 2G problems by solving the homogeneous quarter- 
core test example provided in Ref. [5] with the material and 
geometry configurations shown in Fig. 1. The corresponding 
two group material properties are summarized in TABLE I. 

The boundary conditions of the example problem are given 
as follows, in which zero flux boundaries are imposed on the 
left and bottom edges, while the reflective boundaries are 
assumed on the right and top sides:  

At surface 𝑥𝑥 = 0:     𝜙𝜙𝑔𝑔(0, 𝑦𝑦) = 0 ,                    (2) 

At surface     𝑦𝑦 = 0:     𝜙𝜙𝑔𝑔(𝑥𝑥, 0) = 0 ,                    (3) 

At surface 𝑥𝑥 = 350:     𝜕𝜕
𝜕𝜕𝜕𝜕
𝜙𝜙𝑔𝑔(350,𝑦𝑦) = 0 ,          (4) 

At surface 𝑦𝑦 = 350:     𝜕𝜕
𝜕𝜕𝜕𝜕
𝜙𝜙𝑔𝑔(𝑥𝑥, 350) = 0 .          (5) 

 
TABLE I.  Materials Properties of the Test Example [5]. 

 Material 1 Material 2 

𝐷𝐷1  [ 𝑐𝑐𝑐𝑐] 1.269 1.31 
𝐷𝐷2 [𝑐𝑐𝑐𝑐] 0.9328 0.8695 

𝛴𝛴𝑎𝑎,1 [𝑐𝑐𝑐𝑐−1] 7.86E-4 0 
𝛴𝛴𝑎𝑎,2 [ 𝑐𝑐𝑐𝑐−1] 4.1E-3 2.117E-4 
𝛴𝛴𝑠𝑠,1→2 [𝑐𝑐𝑐𝑐−1] 7.368E-3 1.018E-2 
𝜈𝜈𝛴𝛴𝑓𝑓,2 [ 𝑐𝑐𝑐𝑐−1] 4.562E-3 0 

𝑄𝑄1  [ 𝑛𝑛 ∙ 𝑐𝑐𝑐𝑐−3𝑠𝑠−1] 0.01 0 

 
Fig. 1. Geometry of the test example [5]. 

METHOD 

As mentioned earlier, the key idea behind the PINN 
approach is to construct a NN model approximating the 
solution of the PDE, and then employ AD technique to 
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construct a NN model for the residuals of the PDE. Within 
the PINN framework, a gradient-descent-based algorithm is 
used to train the NN model by minimizing a loss function that 
accounts for both the residuals and other physical constraints 
such as boundary conditions. The trained model can be used 
for making predictions about the system state (i.e., the 
dependent variable) within the solution domain. A general 
description of the PINN framework applied to neutron 
diffusion models can be found in Ref. [3], and thus will not 
be repeated here. The needed modifications in the PINN 
model in the extension of multigroup problems, specifically 
for the 2G test example, are detailed in the following section.  

To apply the PINN to the 2G neutron diffusion model, 
we construct a NN model with two inputs and two outputs: 

�𝜙𝜙1
(𝑥𝑥, 𝑦𝑦)

𝜙𝜙2(𝑥𝑥, 𝑦𝑦)� = 𝑁𝑁𝑁𝑁(𝑥𝑥, 𝑦𝑦) .                         (6) 

We proceed by defining the residuals NN model by 
differentiation the NN based on Eq. (1) 

�𝑓𝑓1𝑓𝑓2
� = −∇ �𝐷𝐷1𝐷𝐷2

� ∇𝑁𝑁𝑁𝑁 + �
Σ𝑟𝑟,1 −𝜈𝜈𝛴𝛴𝑓𝑓,2

−Σ𝑠𝑠,1→2 Σ𝑎𝑎,2
�𝑁𝑁𝑁𝑁 + �𝑄𝑄10 �  . (7) 

In a similar manner, we construct a NN model at each 
boundary based on the corresponding boundary condition 
given Eqs. (2)-(5). For instance, the residuals at the top edge 
(𝑦𝑦 = 350) is defined as: 

�𝑓𝑓𝑇𝑇1𝑓𝑓𝑇𝑇2
� =

𝜕𝜕
𝜕𝜕𝑦𝑦

𝑁𝑁𝑁𝑁(𝑥𝑥, 350)                           (8) 

The next step in the PINN framework is to define a loss 
function that sums up the mean-squares of all the model 
residuals. In other words, the loss function measures the 
deviation of the NN prediction for the target values (i.e., zero 
residuals). By minimizing the loss function, the model 
predictions converge towards the solution of the PDE system.  
One practical form of the loss function is defined as follows 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1 = 1
𝑁𝑁𝑓𝑓
∑ �

𝑓𝑓1�𝑥𝑥𝑖𝑖
𝑓𝑓,𝑦𝑦𝑖𝑖

𝑓𝑓�
𝑓𝑓2�𝑥𝑥𝑖𝑖

𝑓𝑓,𝑦𝑦𝑖𝑖
𝑓𝑓�
�
2

𝑁𝑁𝑓𝑓
𝑖𝑖=1 + 1

𝑁𝑁𝑏𝑏
∑ �

𝑓𝑓𝑇𝑇1�𝑥𝑥𝑗𝑗𝑇𝑇 ,𝑦𝑦𝑗𝑗𝑇𝑇�
𝑓𝑓𝑇𝑇2(𝑥𝑥𝑗𝑗𝑇𝑇 ,𝑦𝑦𝑗𝑗𝑇𝑇

�
2

+ ⋯𝑁𝑁𝑏𝑏
𝑗𝑗=1    (9) 

Due to the complexity of this joint-learning task, we 
added an additional term in the loss function representing the 
physical constraint for positive fluxes 

𝜙𝜙𝑔𝑔(𝑥𝑥, 𝑦𝑦) ≥ 0                                 (10) 

This physical constraint was integrated in the learning task to 
speed-up the convergence. The additional loss term has the 
following form: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2 =
1
𝑁𝑁𝑓𝑓
��

𝑓𝑓1�𝑥𝑥𝑖𝑖
𝑓𝑓 ,𝑦𝑦𝑖𝑖

𝑓𝑓� − �𝑓𝑓1�𝑥𝑥𝑖𝑖
𝑓𝑓 ,𝑦𝑦𝑖𝑖

𝑓𝑓��
𝑓𝑓2�𝑥𝑥𝑖𝑖

𝑓𝑓 ,𝑦𝑦𝑖𝑖
𝑓𝑓� − �𝑓𝑓2�𝑥𝑥𝑖𝑖

𝑓𝑓 ,𝑦𝑦𝑖𝑖
𝑓𝑓��

�
2𝑁𝑁𝑓𝑓

𝑖𝑖=1

         (11) 

Therefore, the final loss function for the test example is 
given by 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2 .                       (12) 

RESULTS 

We implemented the PINN approach outlined in method 
section using Tensorflow1.0 [6] toolbox and applied it to the 
2G test problem. We used the limited memory BFGS [7] 
method for optimizing the loss function. We sampled the 
solution domain using a set of 105 collocation points and a set 
of 200 boundary points per side (i.e., Nf = 105, Nb = 200). All 
training points were generated using the Latin Hypercube 
Sampling strategy (LHS). 

We constructed a fully connected, deep neural network 
with 10 hidden layers, 60 neurons per hidden layer to 
approximate the solution. The training was carried on using 
Google Colab and the run time was about 30 minutes.  

For solution verification, we used COMSOL 
Multiphysics [8] to obtain a high order Finite Element (FEM) 
solution.  We normalized the flux solutions for the sake of 
pointwise comparison. The fast and thermal flux distributions 
yield from the PINN approach are shown in Fig. 2. 

 
Fig. 2. PINN solution for fast flux distribution (a) and 

thermal flux distribution (b) of the test problem. 

For more quantitate comparisons, we defined Peaking 
Factor (PF) metric for the fluxes: 

PF =
max �𝜙𝜙𝑔𝑔(𝑥𝑥,𝑦𝑦)�

1
𝐴𝐴∬𝜙𝜙𝑔𝑔(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

                           (13) 

The values of PF and the relative errors between the 
PINN solutions and FEM solutions are presented in Table II.  
As can be seen, a general acceptable agreement between the 
two results was observed. However, in contrast to nearly 
negligible discrepancy appeared in fast flux, the discrepancy 
in PF for thermal flux was rather large, which also 
contributed to the non-negligible PF errors in the total flux. 
The large discrepancy in the thermal flux PF is mainly due to 
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the non-uniform nature for our equation. We essentially have 
a loss function that is a sum of two losses. The loss due to the 
thermal flux equation is at least one order of magnitude 
smaller than the fast flux loss. This may be a result of the 
fixed-source term in the fast flux equation. Applying a 
gradient-descent-based algorithm to such a loss function 
results in non-uniform optimization (i.e., the optimizer is 
biased towards the larger terms in the loss function due to 
their higher gradient). This effect leads to large residuals in 
the thermal flux equation, which in turn leads to large 
residuals in the fast flux due to the coupling of the equations. 
This complex topology of the loss function resulted 
insufficient training in all numerical experiments. The 
minimum value achieved of the loss function is in order of 
10-5. This is at least three orders of magnitude higher than the 
loss achieved in our previous one group test examples [3]. 

Table II. Values of PFs for the PINN and FEM Solutions. 

 PINN PF FEM PF Error (%) 

Fast flux 2.1932 2.1917 0.068% 
Thermal flux 2.6927 2.1917 22.85% 

Total flux 2.4078 2.1917 9.86% 

The flux distributions and point-wise errors along the 
diagonal line (𝑦𝑦 = 𝑥𝑥) of the space domain for the fast and the 
thermal flux are shown in Fig. 3 and Fig. 4 respectively. 

 
Fig. 3. A comparison between PINN solution and FEM 

solution for the fast flux along the diagonal (x=y). 

 
Fig. 4. A comparison between PINN solution and FEM 

solution for the thermal flux along the diagonal line. 

CONCLUSIONS 
This work extends the PINN approach to the multigroup 

diffusion models. Our results on the application of PINN 
model to a test example justified the feasibility of the PINN 
approach for the 2G diffusion model. However, more effort 
is needed for the optimization of this joint-learning task. The 
complexity of the loss function arising from the fact the PDE 
model is represented by a two coupled equations that have to 
be solved simultaneously. This complexity makes the 
learning task very sensitive to both the training 
hyperparameters and the optimization algorithm. A 
parametric study is needed to optimize these conditions to 
obtain more accurate solutions for the 2G diffusion models.  
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