

Surface Characteristics of three Accident Tolerant Fuel Cladding Materials and their Potential Impact on Critical Heat Flux in LWRs

- Rajnikant Umretiya- Research Scientist
- rajnikant.umretiya@ge.com

Tao Liu, Zeyun Wu, Jessika Rojas, Donghwi Lee, Tiago A. Moreira, Mark Anderson and Raul B. Rebak

Nuclear Energy

Carbon Free Energy

Neutron

U-235

- Worldwide Nuclear power reactors \rightarrow 440
- U.S. Nuclear power reactors \rightarrow 94
- Research and test reactors in U.S. \rightarrow 30

Neutrons

Enera

Fission Product

 Nuclear Energy supply nation's 20% electricity need

Fig. 2 Schematic view of a PWR fuel assembly (Tang2017 et. al.)

Fig. 1 Basic concept of Nuclear Power Generation (Pressurized Water Reactor (PWR))

STRUCTURE

PRESSURIZER

CONTROL RODS

REACTOR

VESSEL

TURBINE

Rich, Alex K., and Tom Warhol. "Nuclear Power: An Overview." Points of View Reference Center. N.p., 1 Mar. 2016. Web. 24 Oct. 2016.

STEAM

GENERATOR

┉₿₽₿₿₩

GENERATOR

CONDENSER

Challenges

Fukushima nuclear reactor accident

Fuel oxidation

$Zr + 2H_2O \rightarrow ZrO_2 + 2H_2$ $\Delta H = -586 \, kJ/mol$

Cross section of Zircaloy-4 after steam oxidation at 1400 °C for 2 min (Leistikow et. al. (1985))

Fukushima Daiichi nuclear accident on March 11th, 2011 (Tohoku earthquake and tsunami)

- Disabled the emergency power generators
- Insufficient cooling \rightarrow three nuclear reactor meltdown
- Core temperatures > 1200 °C
- Hydrogen-air explosions
- The release of radioactive material

Accident Tolerant Fuels

After Fukushima, US Congress mandated DOE to develop "melt-proof" nuclear fuel technology.

According to DOE, <u>"</u>the fuels with enhanced accident tolerance are those that, in comparison with the standard UO_2 – Zr system, can tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operations".

Focus on cladding development: limiting the high temperature steam oxidation

Parabolic oxidation rate for various cladding materials and their resulting oxide in steam as a function of temperature (*Pint2015 et. al., Terrani2014 et. al.*)

Concepts of ATF

Improved Clad Reaction Kinetics with Steam

- Heat of Oxidation
- o Oxidation rate
- Hydrogen bubble and explosion
- Hydrogen embrittlement of the clad

Improved Cladding Properties

- Clad fracture
- Geometric stability
- Thermal shock resistance
- Melting of the cladding

Improved Fuel Properties

- Lower operating temperatures
- Clad internal oxidation
- Fuel relocation
- Fuel melting

Enhanced Retention of Fission Products

- Gaseous fission products
- Solid/liquid fission products

Areva's Enhanced Accident Tolerant Fuel Program (2017)

Current Research: FeCrAl – An ATF

Rebak et al. – 2017 – Iron-chrome-aluminum alloy cladding for increasing safety in nuclear power plant

Fig. 2 Cross sections of coupons exposed to BWR simulated conditions for one year (288 $^{\circ}$ C + 2 ppm O₂)

Fig. 3 Mechanical properties of Zircaloy-2 and APMT without irradiation 6

Rebak et al. – 2016 – FeCrAl Alloys for Accident Tolerant Fuel Cladding in Light Water Reactors

Current Research: Cr-coated Zircaloy Cladding

<u>Westinghouse</u>

Coating materials: Cr

Fabrication method: Cold spraying

Fig. 1 Cross section microstructures after ultra-high temperature oxidation in 1300 °C steam for 20 min

No spalling of the coating was observed:

Fig. 2 Cr-coated samples after tensile testing: a) 1% strain, b) 10% strain and c) test to failure

Framatome

Coating materials: Cr

ZrO2

Coated Zircaloy-4 clad segment, weight gain = 11.4 mg/cm³

Uncoated Zircaloy-4 clad segment, weight

 $gain = 40.4 mg/cm^3$

Fabrication method: Physical Vapor Deposition

Equipment of PVD

Shah et al. – 2017 – Development of Surface Coatings for Enhanced Accident Tolerant Fuel (ATF)

Bischoff et al. – 2018 – AREVA NP's enhanced accident-tolerant fuel developments focus on Cr-coated M5 cladding

Motivation of this work

Figure 1: Comparison of Critical Heat Flux (CHF) data in term of roughness factor r and contact angle θ. (r is surface area ratio of geometric area to projected area) (Son et al.(2017)).

Figure 3: Schematic diagram for the higher HTC on the Zr4-Cr-CS rough surface compared to the bare Zr4 smooth surface (Lee et al.(2020)).⁸

Young's law

 $\gamma_{LV}\cos\theta=\gamma_{SV}-\gamma_{SL}$

Rame-hart Contact Angle Goniometer To measure wettability of surface

- **Hydrophilic**: Droplet fills the roughness asperities and wets entire solid surface
- **Hydrophobic**: Droplet sits raised up on the roughness

asperities, cause air pockets underneath the droplet

Kock-Yee Law & Hong Zhao et. al. 2016

Roughness

Understanding of the surface roughness parameters (Bitelli et. al.(2012))

BRUKER

Mitutoyo SJ-410 profilometer

Bruker Dimension Icon Atomic Force Microscope

- **Ra:** The arithmetic average roughness
- Rz: The average of the five highest peaks and the five deepest valleys
- **RSm:** The arithmetic mean value of the width

of profile elements

CHF test

Figure 1: Atmospheric Pressure Loop at University of Wisconsin – Thermal Hydraulic Lab

Table I. Testing parameters used for the flow boiling CHF test

Testing parameter	Value			
		Experimental CHF values		
Cladding tube OD (mm)	9.5 (Zr-based alloys) and 10.26 (FeCrAl alloys)	Sample	CHF value (MW/m²)	
Cladding wall thickness (mm)	0.51 (Zr-based alloys) and 0.4	AR-Zr4	2.63	
	(FeCrAl alloys)	600G-Zr4-Cr-PVD	2.58	
Working fluid	Water	A D T A C C C	2.31	
Nominal heat flux (MW/m ²)	0 - 3	AK-ZI4-CI-C5		
Inlet temperature (°C)	24	APMT	2.54	
Inlet pressure (kPa)	115	C26M	2.26	
Nominal mass flux (kg/m ² s)	750			
Heated length (mm)	457.2			
Hydraulic diameter (mm)	10.50 (Zr-based alloys) and 9.74 (FeCrAl alloys)			

Surface Characteristics before and after CHF test: Cr-Zr4

Figure 1: Comparison of Static Contact angle for all samples

increased. These surface parameters could

lead to better thermal-hydraulic

performance in reactor

Roughness data measured using Contact Profilometer (Mitutoyo SJ-410)

Sample	Ra (µm)	Rq (μm)		
AR-Zr4	0.43	0.54		
600G-Zr4- Cr-PVD	0.47	0.61		
AR-Zr4- Cr-CS	1.04	1.33		
After CHF				
Απ	erCHF			
Aft	er CHF	J		
Sample	Ra (µm)	Rq (µm)		
Sample AR-Zr4	Ra (μm) 0.56	Rq (μm) 0.79		
Art Sample AR-Zr4 600G-Zr4- Cr-PVD	Ra (μm) 0.56 0.51	Rq (μm) 0.79 0.666		

Surface Characteristics before and after CHF test : FeCrAl

Figure 1: AFM topography : a) APMT_Pre-CHF, b) APMT_Post-CHF, c) C26M_Pre-CHF and d) C26M_Post-CHF

Roughness data measured using Contact Profilometer (Mitutoyo SJ-410)					
Sample	Contact profilometry measurements (μm)			AFM measurements (nm)	
	Ra	Rz	RSm	Ra	r
APMT_Pre-CHF	0.40±0.09	3.89±0.99	70.11±7.24	205	1.02
APMT_Post- CHF	0.47±0.08	4.68±1.03	76.86±8.22	243	1.03
C26M_Pre-CHF	0.80±0.12	8.75±1.65	130.27±22.73	454	1.02
C26M_Post- CHF	0.90±0.10	9.62±1.83	138.86±22.92	550	1.04

- Post-CHF samples showed significant increase in wettability (given by decrease in contact angle in Fig. 2) for both APMT and C26M
- Roughness for both FeCrAl samples was slightly increased.

Figure 2: Comparison of static contact angle (left) and droplet spreading (right) for FeCrAl alloys before and after CHF test

(R. V. Umretiya, et. Al. J. of Nuc. Mat.. 541 (2020) 152420)

Experimental Results: CHF Test

surface temperature for Zircaloy-4, both types of Cr-coatings, and FeCrAl alloys (all heat flux values are in MW/m²).

Figure 2. Boiling curves for the tested samples obtained based on the thermocouple's data.

Simulated Results: CHF Test

Summary of experimental and simulated CHF and PCT data for all samples

	CHF (MW/m ²)			PCT (°C)		
Material	Experime ntal	RELAP5- 3D	Error (%)	Experime ntal	RELAP5- 3D	Error (%)
AR-Zr4	2.60	2.72	4.62	175.86	161.05	-8.42
600G- Zr4-Cr- PVD	2.57	2.40	-6.61	179.35	152.85	-14.78
AR-Zr4- Cr-CS	2.28	2.48	8.77	176.25	152.6	-13.42
APMT	2.54	2.56	0.79	212	158.20	-25.38
C26M	2.26	2.56	13.27	212	153.95	-27.38

- A minimum timestep of 1×10^{-8} s was used for the dynamic simulations.
- The Groeneveld look-up table was used to predict CHF in the RELAP5-3D model.
- To better simulate the flow boiling CHF experiments, the Risk Analysis and Virtual Environment (RAVEN) was coupled with RELAP5-3D.

Nodalization diagram of RELAP5-3D model

Simulated Results: CHF Test

Comparison of simulated tube outer surface temperature at different heat flux for (a) substrate Zircaloy-4; Cr-coated Zircaloy-4: PVD (600G-Zr4-Cr-PVD) (b) and Cold Spray (AR-Zr4-Cr-CS) (c); FeCrAl alloys: APMT (c) and C26M (d) (all heat flux values are in MW/m²)

Summary and Feature work

• The surface properties of all samples were assessed in terms of surface topography, roughness

characteristics, and wettability measurements

- CHF experiments using these cladding materials were conducted at atmospheric pressure within a flow boiling facility
- The RELAP5-3D simulation results of CHF and PCT were within reasonable error with experimental data
- Future work will include a transient heat flux model in RELAP5-3D which can also incorporate the effect of surface characteristics in CHF and HTC using existing correlations in the literature
- Furthermore, sensitivity analysis will be performed to investigate the impact of HTC, and material thermal properties on CHF and PCT

Thanks!! Questions?

The project "Evaluation of Accident Tolerant Fuel Surface Characteristics in Critical Heat Flux Performance" is being financed by the DOE-NEUP program with project number 17-13019 and federal grant ID DE-NE0008709.

