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Nuclear Energy
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• Carbon Free Energy

Fig. 2 Schematic view of a PWR 

fuel assembly (Tang2017 et. al.)Fig. 1 Basic concept of Nuclear Power Generation (Pressurized Water Reactor 

(PWR))
Rich, Alex K., and Tom Warhol. "Nuclear Power: An Overview." Points of View Reference Center. N.p., 1 Mar. 2016. Web. 24 Oct. 2016.

• Worldwide Nuclear power reactors → 440

• U.S. Nuclear power reactors → 94

• Research and test reactors in U.S. → 30

• Nuclear Energy supply nation’s 20% electricity 

need 



Challenges 
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The Fukushima Daiichi Accident Report by the Director General (2015)

o Fukushima nuclear reactor accident

Fukushima Daiichi nuclear accident on March 11th, 2011 

(Tohoku earthquake and tsunami)
• Disabled the emergency power generators

• Insufficient cooling → three nuclear reactor meltdown

• Core temperatures > 1200 ºC

• Hydrogen-air explosions

• The release of radioactive material Cross section of Zircaloy-4 after steam 

oxidation at 1400 ºC for 2 min (Leistikow et. al. (1985))

Fuel oxidation

𝑍𝑟 + 2𝐻2𝑂 → 𝑍𝑟𝑂2 + 2𝐻2

∆𝐻 = −586 𝑘𝐽/𝑚𝑜𝑙



Accident Tolerant Fuels
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Focus on cladding development: limiting the high temperature 

steam oxidation 

Parabolic oxidation rate for various cladding 

materials and their resulting oxide in steam as a 

function of temperature (Pint2015 et. al., Terrani2014 et. al.)

According to DOE, “the fuels with enhanced accident tolerance 

are those that, in comparison with the standard UO2 – Zr system, 

can tolerate loss of active cooling in the core for a 

considerably longer time period while maintaining or 

improving the fuel performance during normal operations”.

After Fukushima, US Congress mandated DOE to develop 

“melt-proof” nuclear fuel technology.



Concepts of ATF
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Improved Clad Reaction 

Kinetics with Steam

o Heat of Oxidation

o Oxidation rate

o Hydrogen bubble and explosion

o Hydrogen embrittlement of the 

clad

Improved Fuel Properties

o Lower operating temperatures

o Clad internal oxidation

o Fuel relocation

o Fuel melting

Improved Cladding 

Properties

o Clad fracture

o Geometric stability

o Thermal shock resistance

o Melting of the cladding

Enhanced Retention of 

Fission Products

o Gaseous fission products

o Solid/liquid fission products

Areva’s Enhanced Accident Tolerant Fuel Program (2017)

ATF Claddings

Concept 1

Surface modification

Zr alloys

Surface 

coating

FeCrAl

Cr

Mo

SiC

Concept 2

Replacement

Alloys

APMT

C26M

310SS



Current Research: FeCrAl – An ATF

6Rebak et al. – 2017 – Iron-chrome-aluminum alloy cladding for increasing safety in nuclear power plant
Rebak et al. – 2016 – FeCrAl Alloys for Accident Tolerant Fuel Cladding in Light Water Reactors

Fig. 1 Schematic representation of how Al and Cr in FeCrAl react to normal 

operation and accident conditions
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heated Steam

Fig. 3 Mechanical properties of Zircaloy-2 and APMT without 

irradiation

Fig. 2 Cross sections of coupons exposed to BWR simulated conditions 

for one year (288 ̊C + 2 ppm O2)

a) b)

~ 0.278 𝜇m

~ 1.23 𝜇m



Current Research: Cr-coated Zircaloy Cladding

7Shah et al. – 2017 – Development of Surface Coatings for Enhanced Accident Tolerant Fuel (ATF)

Bischoff et al. – 2018 – AREVA NP’s enhanced accident-tolerant fuel developments focus on Cr-coated M5 cladding

Framatome

Coating materials: Cr

Fabrication method: Physical Vapor Deposition

Fig. 3 Zircaloy clad with/without Cr-coating after LOCA in 1200 ̊C steam for 6000 

s

Uncoated Zircaloy-4 clad segment, weight 

gain = 40.4 mg/cm3

Coated Zircaloy-4 clad segment, weight gain 

= 11.4 mg/cm3

Fig. 4 Corrosion of Cr-coated M5 exposed 

to 360 ̊̊C PWR water

Equipment of PVD

Westinghouse

Coating materials: Cr

Fabrication method: Cold spraying

Fig. 1 Cross section microstructures after ultra-high temperature oxidation in 

1300 ̊C steam for 20 min

150 µm

5 µm

No spalling of the coating 

was observed:

Fig. 2 Cr-coated samples after 

tensile testing: a) 1% strain, b) 

10% strain and c) test to failure 

a)

b)

c)



Motivation of this work
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Figure 1: Comparison of Critical Heat Flux (CHF) data in term of roughness 

factor r and contact angle θ. (r is surface area ratio of geometric area to 

projected area) (Son et al.(2017)).

Figure 3: Schematic diagram for the higher HTC 

on the Zr4-Cr-CS rough surface compared to the 

bare Zr4 smooth surface (Lee et al.(2020)).

Figure 2: 

Comparison of 

average heat 

transfer 

coefficient (HTC) 

of the bare Zr4, 

Zr4-Cr-PVD and 

Zr4-Cr-CS rod, 

respectively (Lee 

et al.(2020)).



Wetting
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Young’s law

𝛾𝐿𝑉 cos 𝜃 = 𝛾𝑆𝑉 − 𝛾𝑆𝐿
• Hydrophilic: Droplet fills the roughness asperities and 

wets entire solid surface

• Hydrophobic: Droplet sits raised up on the roughness 

asperities, cause air pockets underneath the droplet

hydrophilichydrophobic

Rame-hart Contact Angle 

Goniometer
To measure wettability of surface

Sample stage

Kock-Yee Law & Hong Zhao et. al. 2016



Roughness
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▪ Ra: The arithmetic average roughness

▪ Rz: The average of the five highest peaks and 

the five deepest valleys

▪ RSm: The arithmetic mean value of the width 

of profile elementsMitutoyo SJ-410 profilometer 
Bruker Dimension Icon 

Atomic Force Microscope

Understanding of the surface roughness parameters (Bitelli et. al.(2012)) 



CHF test
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Figure 1: Atmospheric Pressure 

Loop at University of Wisconsin –

Thermal Hydraulic Lab

AR-Zr4

Sample
CHF value 
(MW/m2)

AR-Zr4 2.63

600G-Zr4-Cr-PVD 2.58

AR-Zr4-Cr-CS 2.31

APMT 2.54

C26M 2.26

Experimental CHF values

(R. V. Umretiya, et. Al. J. of Nuc. Mat.. 541 (2020) 152420)

Testing parameter Value

Cladding tube OD (mm)
9.5 (Zr-based alloys) and 10.26 

(FeCrAl alloys) 

Cladding wall thickness (mm)
0.51 (Zr-based alloys) and 0.4 

(FeCrAl alloys)

Working fluid Water 

Nominal heat flux (MW/m2) 0 - 3 

Inlet temperature (ºC) 24 

Inlet pressure (kPa) 115 

Nominal mass flux (kg/m2s) 750 

Heated length (mm) 457.2

Hydraulic diameter (mm)
10.50 (Zr-based alloys) and 

9.74 (FeCrAl alloys)

Table I. Testing parameters used for the flow boiling CHF test



Surface Characteristics before and after CHF test: Cr-Zr4
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Figure 2: Droplet spreading after CHF test
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Figure 1: Comparison of Static Contact angle for all samples

(R. V. Umretiya, et. Al. J. of Nuc. Mat.. 541 (2020) 152420)

Sample
Ra 

(𝜇m)
Rq

(𝜇m)

AR-Zr4 0.56 0.79

600G-Zr4-
Cr-PVD

0.51 0.66

AR-Zr4-Cr-
CS

1.11 1.50

Roughness data measured 

using Contact Profilometer 

(Mitutoyo SJ-410)

Sample
Ra 

(𝜇m)
Rq

(𝜇m)

AR-Zr4 0.43 0.54

600G-Zr4-
Cr-PVD

0.47 0.61

AR-Zr4-
Cr-CS

1.04 1.33

After CHF

• Post-CHF samples showed improved 

wettability for substrate Zr-4 and Cold 

Spray coated samples however wettability 

for PVD coating was slightly decreased

• Roughness for all samples was slightly 

increased. These surface parameters could 

lead to better thermal-hydraulic 

performance in reactor



Surface Characteristics before and after CHF test : FeCrAl
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Sample
Contact profilometry measurements 
(𝜇m)

AFM measurements 
(nm)

Ra Rz RSm Ra r

APMT_Pre-CHF 0.40±0.09 3.89±0.99 70.11±7.24 205 1.02
APMT_Post-
CHF

0.47±0.08 4.68±1.03 76.86±8.22 243 1.03

C26M_Pre-CHF 0.80±0.12 8.75±1.65 130.27±22.73 454 1.02
C26M_Post-
CHF

0.90±0.10 9.62±1.83 138.86±22.92 550 1.04

Roughness data measured using Contact Profilometer (Mitutoyo SJ-410)

Figure 1: AFM topography : a) APMT_Pre-CHF, b) APMT_Post-CHF, c) C26M_Pre-CHF and d) C26M_Post-CHF

a) b) c) d)

(R. V. Umretiya, et. Al. J. of Nuc. Mat.. 541 (2020) 152420)

Figure 2: 

Comparison of 

static contact 

angle (left) and 

droplet 

spreading (right) 

for FeCrAl alloys 

before and after 

CHF test

• Post-CHF samples showed significant increase in wettability (given by 

decrease in contact angle in Fig. 2) for both APMT and C26M

• Roughness for both FeCrAl samples was slightly increased. 



Experimental Results: CHF Test
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Figure 2. Boiling curves for the tested samples 

obtained based on the thermocouple’s data.

Figure 1. Comparison of experimental tube outer 

surface temperature for Zircaloy-4, both types of 

Cr-coatings, and FeCrAl alloys (all heat flux values 

are in MW/m2).



Simulated Results: CHF Test

15Nodalization diagram of RELAP5-3D model

Material

CHF (MW/m2) PCT (°C)

Experime

ntal

RELAP5-

3D

Error (%) Experime

ntal

RELAP5-

3D

Error

(%)

AR-Zr4 2.60 2.72 4.62 175.86 161.05 -8.42

600G-

Zr4-Cr-

PVD

2.57 2.40 -6.61 179.35 152.85 -14.78

AR-Zr4-

Cr-CS

2.28 2.48 8.77 176.25 152.6 -13.42

APMT 2.54 2.56 0.79 212 158.20 -25.38

C26M 2.26 2.56 13.27 212 153.95 -27.38

Summary of experimental and simulated CHF and PCT data for all samples

• A minimum timestep of 1×10-8 s was used for the dynamic simulations. 

• The Groeneveld look-up table was used to predict CHF in the 

RELAP5-3D model. 

• To better simulate the flow boiling CHF experiments, the Risk Analysis 

and Virtual Environment (RAVEN) was coupled with RELAP5-3D.

(flow source)

(flow sink)



Simulated Results: CHF Test
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Comparison of simulated tube outer surface 

temperature at different heat flux for (a) substrate 

Zircaloy-4;  Cr-coated Zircaloy-4: PVD (600G-Zr4-Cr-

PVD) (b) and Cold Spray (AR-Zr4-Cr-CS) (c); FeCrAl 

alloys: APMT (c) and C26M (d) (all heat flux values are 

in MW/m2)

a)
b)

c)

d)

e)



Summary and Feature work
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o The surface properties of all samples were assessed in terms of surface topography, roughness 

characteristics, and wettability measurements

o CHF experiments using these cladding materials were conducted at atmospheric pressure within a flow 

boiling facility

o The RELAP5-3D simulation results of CHF and PCT were within reasonable error with experimental data

o Future work will include a transient heat flux model in RELAP5-3D which can also incorporate the effect 

of surface characteristics in CHF and HTC using existing correlations in the literature

o Furthermore, sensitivity analysis will be performed to investigate the impact of HTC, and material 

thermal properties on CHF and PCT

zwu
Pencil

zwu
Pencil

zwu
Pencil



Thanks!! Questions?
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