
ANS M&C 2021 - The International Conference on Mathematics and Computational Methods Applied
to Nuclear Science and Engineering ⋅ Raleigh, North Carolina ⋅ October 3–7, 2021

1

PHYSICS-INFORMED DEEP LEARNING NEURAL NETWORK SOLUTION TO THE
NEUTRON DIFFUSION MODEL

Mohamed H. Elhareef1, Zeyun Wu1, and Yu Ma2

1Department of Mechanical and Nuclear Engineering,
Virginia Commonwealth University, 401 W. Main Str., Richmond VA, USA 23219

2Sino-French Institute of Nuclear Engineering and Technology,
Sun Yat-sen University, Zhuhai, P.R. China 519082

elhareefmh@mymail.vcu.edu; zwu@vcu.edu; mayu9@mail.sysu.edu.cn

ABSTRACT

In this work, we employed physics-informed neural network (PINN) to solve the loosely
coupled reactor model (LCRM) based on the neutron diffusion model. In particular, we solved
the two-dimensional, time-independent, constant source diffusion equation with zero-
incoming flux physics conditions, which were formed as generic Robin boundary conditions.
To demonstrate a clear understanding of the PINN approach, we started the investigation
journey by solving the one-dimensional time-dependent Burgers’ equation with Dirichlet
boundary conditions. We then extended the approach to solve the multi-region diffusion
problem. We constructed a deep neural network that was constrained by diffusion equations
representing the two regions of the LCRM and a set of ordinary differential equations
representing the Robin boundary conditions. To verify the PINN solution, we used COMSOL
Multiphysics software to obtain a finite element method (FEM) solution for the LCRM. The
most accurate PINN solution for neutron flux we obtained has ~0.63% mean relative error
compared with the FEM solution, which demonstrates the applicability of the PINN to the
diffusion model with Robin boundary conditions. Though the current form of PINNs is slower
compared with the conventional methods such as FEM, the manpower needed in PINN is
significantly reduced while keeping the same level of accuracy. Moreover, PINN can be readily
extended to problems with complex geometries and versatile boundary conditions.

KEYWORDS: Diffusion Equation; Deep Learning; Physics-Informed Neural Networks.

1. INTRODUCTION

Theory-guided data science (TGDS) is an emerging paradigm that aims to integrate specific scientific
knowledge in data science. TGDS attempts to exploit the power of data science to obtain physically
consistent models. TGDS leads to generalizable data analytics-based approaches that capture causative
relations between input and output variables of any specific physics models. Karpatne et al. [1]
conceptualized the paradigm of TGDS and described several implementation approaches. One of these
approaches is on theory-guided constrained optimization. In this approach, a theory-guided constrained
model such as the partial differential equation (PDE) model is imposed on the deep learning process for the
solution. In other words, the learning procedure precludes any solution that violates the physics knowledge

dx.doi.org/10.13182/M&C21-33675

Reduced-Order M
odels for Reactor Analysis

990 ANS M&C 2021 October 3–7, 2021

Physics-Informed Deep Learning Neural Network Solution to the Neutron Diffusion Model

Elhareef, Wu, and Ma

2

about the system, which virtually creates a physics-informed learning environment that incorporates the
specific physics into the learning solutions.

Neural Networks (NNs) can be considered as universal function approximators [2] that are trained to
approximate any desired function with any desired precision. This capability enables the use of the TGDS
paradigm based NNs to solve PDEs without the procedure of discretizing the solution domain. Physics-
informed neural network (PINN) is one TGDS type approach that uses the known mathematical description
of systems to optimize the NNs [3]. PINN incorporates additional physics information into the NNs and
achieves very accurate predictions of the physics model without the need of large training data sets as
conventional supervised machine learning approaches.

PINN has been recently attempted in many engineering applications. Raissi et al. [3] developed a PINN
framework for solving forward and inverse problems based on non-linear partial differential equations
(PDEs). They introduced two approaches to solve PDEs: continuous time models and discrete time models.
Continuous time models require the solution domain to be sampled over its variables. In high-dimension
systems, this approach may result in the need of large training sets and thereby long training time. Discrete
time models, on the other hand, incorporate the classical Runge-Kutta time-stepping schemes to overcome
the potential limitation on continuous time models. However, Raissi’s method does not guarantee
convergence to a global minimum and does not resolve the problem of quantifying the uncertainty in the
NN predictions. Mao et al. [4] investigated the possibility of using PINN to approximate the Euler equations
that model high-speed aerodynamic flows. They have shown that PINN solutions for the Euler equations
are more accurate when using training data clustered around discontinuous region compared with uniform
training data. Yang and Perdikaris [5] introduced a class of probabilistic PINN that can be trained using
noisy and incomplete data along with the physical laws to predict the system states. In their work, the NN
model is used to approximate an arbitrary conditional probability density function of the observable output
depending on its free variables and a collection of random latent variables. This approach reduces the need
to repeat expensive experiments or numerical simulations and provides a method to quantify uncertainty in
the NN predictions. Iskhakov and Dinh [6, 7] applied a physics-integrated neural network (note this is a bit
different to the PINN concept) approach to the Navier-Stokes equations in a two-part paper. They devoted
part I [6] to demonstrate the applicability of their framework to the 2D lid-driven cavity with non-constant
velocity-dependent dynamic viscosity. Their framework consists of a system of PDEs (Navier-Stokes
equations) with embedded deep feedforward NN (DFNN) to predict the velocity-dependent dynamic
viscosity. The NN takes as input a velocity field and the predicted dynamic viscosity is then used as input
to a PDE solver using Chorin’s projection method to calculate the velocity field. The NN learnable
parameters is learnt by minimizing the mismatch between the initial and the calculated velocity fields. In
part II [7], they further addressed the performance of their framework by considering two case studies: 2D
turbulent lid-driven cavities with predicted with a DFNN (a) turbulent viscosity and (b) derivatives of the
Reynolds stresses. Their results demonstrated the possibility of extracting unknown physical values by
enforcing the physical knowledge on the field variables calculated using this physical values.

In this work, we are exploring the potential of PINNs in nuclear reactor physics calculations. PINN is
advantageous for systems in which training data sets are small and the cost of acquiring data is high. It is
capable of obtaining a generalizable model with a small data set by taking the advantage of the prior
physical knowledge about the system. This is an intriguing feature for neutronics calculations because it is
well-known high-fidelity reactor core simulation is time consuming and lacks of sufficient training data.
The rest of the paper is organized as follows. In Section 2, we briefly introduce the PINN method for
solving a general PDE based problem. In Section 3, we present two numerical examples. The first example
basically is a duplication of Raissi’s work on the Burgers’ equation to ensure the correct implementation of
PINN in this work. The second example is a PINN solution of the loosely coupled reactor model (LCRM)
problem [8] based on neutron diffusion equation. Some concluding remarks on the PINN applications to
neutronics calculations are offered in Section 4.

Physics-Informed Deep Learning Neural Network Solution to the Neutron Diffusion Model
Reduced-Order M

odels for Reactor Analysis

ANS M&C 2021 October 3–7, 2021 991

PINN Solution to Diffusion Models

3

2. METHODOLOGY

A general form for a non-linear PDE model may be described as a functional

1 2: ((, , ,)) 0,nF Y x x x= = (1)

where x1, ···, xn are independent variables, Y(x1, x2,···, xn) is a state function that satisfies Eq.(1), and ℕ is a
non-linear differential operator. In the framework of PINN, Y(x1, x2, ···, xn) can be approximated by a NN
model that predicts the value of Y at any point within the range of the independent variables. Denoting the
NN model as net_Y(x1, x2,···, xn), we define a functional net_F as follows

1 2_ : (_ (, , ,))nnet F net Y x x x= . (2)

The net_Y(x1, x2, ···, xn) will then be trained to predict the value of Y by penalizing the NN with a loss function
that minimizes for the following two components: (1) the mismatches between the predictions net_Y and
the known values of Y (e.g., boundary conditions); (2) the mismatches between predictions net_F and its
exact values (i.e., 0 as implied by Eq.(1).

Under the PINN framework proposed by Raissi et al. [3], two sets of training data were defined, denoting
as labeled set and unlabeled set, respectively. The labeled data set contains Nb points randomly picked from
the known boundaries of the solution domain. The unlabeled data set contains Nf points randomly picked
from the interior points. The loss function associated with labeled and unlabeled data sets are defined into
a mean squared error (MSE) form as the following equations

2

1 2 1 2
1

1Loss _ (, ,...) (, ,...)
bN

i i i i i i
b n n

ib

net Y x x x Y x x x
N =

 = − ∑ , (3)

2

1 2
1

1Loss _ (, ,...)
fN

i i i
f n

if

net F x x x
N =

 = ∑ . (4)

The optimization of the NN learnable parameters (weights (w) and biases (b) of the NN) is achieved by
minimizing the total loss function defined by

Loss Loss Lossb f= + . (5)

Figure 1 shows the loss function and the NN training procedure in the PINN framework [3].

Figure 1. A representation of the loss function definition and training process in PINNs.

Physics-Informed Deep Learning Neural Network Solution to the Neutron Diffusion Model

Reduced-Order M
odels for Reactor Analysis

992 ANS M&C 2021 October 3–7, 2021

Elhareef, Wu, and Ma

4

As shown in Eq. (2), the predictions of net_F require the derivative terms appear in the PDE model to be
calculated at specific points in the solution domain. Many numerical approaches can be utilized to calculate
the derivatives. One common way is to evaluate these derivatives by automatic differentiation (AD)
techniques [9], which determines the derivative of a response to a parameter by applying the chain rules of
derivatives at each step in the source code that produces the numerical results. In our application as shown
in the following section, AD approach is used for the derivative evaluations, however, AD can realized by
built-in capabilities of standard NN toolbox such as TensorFlow software [10]. This is extra bonus we
would take when implementing PINN using existing NN open tools.

3. NUMERICAL EXAMPLES

In this section, we demonstrate the PINN applications to two PDE based examples. The first example is the
Burgers’ equation [3, 11], which is a fundamental PDE that can be derived from the Naiver-Stokes equation
for the velocity field by dropping the pressure gradient term. The second example is the LCRM problem,
which is described by a time-independent, one-group, two-dimensional (2D) diffusion equation with fixed
sources.

3.1. Burgers’ Equation

The time-dependent one-dimensional (1D) Burgers’ equation along with Dirichlet boundary conditions and
a user defined initial condition can be defined as follows

2

2

0.01: 0u u uf u
t x xπ

∂ ∂ ∂
= + − =
∂ ∂ ∂

, (6)

where x ϵ [-1, 1], t ϵ [0, 1], and the boundary and initial conditions are subject to

(0,) sin()u x xπ= − , (7)

(, 1) (,1) 0u t u t− = = . (8)

The PINN solution of the Burgers’ equation can be obtained by approximating the velocity field u(t, x) to
an NN solution net_u(t, x), which can be differentiated according to the PDE to construct an NN
approximated net_f(t, x) to approximate the functional f specified in Eq.(6). The loss function is defined in
the manner as described in Eq.(5). In this work, the TensorFlow software [10] was used to create and train
a deep network to predict the velocity field governed by the Burgers’ equation. The initial and boundary
conditions were presented to the model in the form of set of 150 points associated with coordinates (t, x)
and the value of velocity (u) corresponding to each point according to Eq.(7) and (8). To construct net_f(t,
x), a TensorFlow built-in function was used to calculate the required derivatives appeared in the PDE model
shown in Eq.(6). These derivatives are calculated at a set of 10000 internal points. The data at the boundaries
and inside the domain are used to estimate the loss function in order to optimize the PINN solution.

Regarding the NN construction, the same NN structure and optimization algorithm recommended by Raissi
[3] were used. The NN model used in this example has 9 hidden layers and each layer contains 20 neurons.
The hyperbolic tangent sigmoid transfer function is used as the threshold function for each activation
connector in the network. The loss function was minimized using the L-BFGS approach - a quasi-Newton,
full-batch gradient-based optimization algorithm [12]. The labeled data set contains 50 randomly picked
initial points and 100 randomly picked boundary points. The unlabeled data set contains 10000 points
generated based on the Latin Hypercube Sampling (LHS) strategy [13]. The model was trained for 60
minutes with one laptop computer (22 minutes on a Google Collaboration GPU).

Figure 2 shows a comparison between the analytical solution and the PINN model at t equal 0.25, 0.5, and
0.75, respectively. The analytical solution of Burgers’ equation was provided by Cole and complied by

Physics-Informed Deep Learning Neural Network Solution to the Neutron Diffusion Model
Reduced-Order M

odels for Reactor Analysis

ANS M&C 2021 October 3–7, 2021 993

PINN Solution to Diffusion Models

5

Benton and Platzman [11]. Figure 3 shows the full solution predicted by the PINN model as well as the
absolute errors compared to the analytic solution. A uniform 101 × 101 grid points (including the initial and
boundary points) along the time and space dimension were used for the point-to-point solution comparison.
The mean absolute error of two set of solutions is 5.01E-04. These results indicate the PINN method has
been clearly understood at our part and the efforts we made here successfully predicted the Burgers’ function
in an acceptable level of accuracy. We are confident to extend these efforts to a diffusion model based
reactor problem.

Figure 2. A comparison between PINN and analytical u(t, x) at t = 0.25, 0.5, and 0.75, respectively.

Figure 3. The PINN predicted u(t, x) distribution (top) and absolute point-wise errors distribution
(bottom).

Physics-Informed Deep Learning Neural Network Solution to the Neutron Diffusion Model

Reduced-Order M
odels for Reactor Analysis

994 ANS M&C 2021 October 3–7, 2021

Elhareef, Wu, and Ma

6

3.2. Loosely Coupled Reactor Model Based on the Diffusion Equation

The one-group two-dimensional steady state diffusion equation can be described as:

: (,) (,) (,) (,) (,) 0af D x y D x y x y x y S x y
x x y y

φ φ φ
 ∂ ∂ ∂ ∂ = − + + Σ − = ∂ ∂ ∂ ∂

, (9)

where aΣ is the macroscopic absorption cross section, and D is the diffusion coefficient defined by:

1

1 1
3 3()tr t s

D = =
Σ Σ −Σ

, (10)

and 1, ,tr t sΣ Σ Σ are the macroscopic transport, total, and anisotropic scattering cross section, respectively.
For the isotopic scattering case, 1sΣ = 0, the diffusion coefficient can be reduced to:

()
1 1

3 3t a s

D = =
Σ Σ + Σ

, (11)

where sΣ is the macroscopic isotropic scattering cross section.

In this work, we solved the LCRM example problem described in Ref. [8] based on diffusion equation
shown in Eq.(9). The configuration of LCRM is shown in Figure 4. The model contains two regions: blanket
and core region. Only isotropic source and scattering cross section are considered. The macroscopic cross-
sections and constant source strengths for the core and blanket regions are given in Table 1.

Figure 4. Geometry of the LCRM problem.

Table 1. Material Properties of the LCRM.

Region Material aΣ (cm-1) sΣ (cm-1) S (n/cm3)
Core 0.062158 0.089302 0.01048083

Blanket 0.064256 0.094853 0.00214231

Zero-incoming fluxes are assumed for all boundary surfaces of the problem, which can be expressed as
Robin type boundary conditions as follows (with surface location specified in Figure 4):

Physics-Informed Deep Learning Neural Network Solution to the Neutron Diffusion Model
Reduced-Order M

odels for Reactor Analysis

ANS M&C 2021 October 3–7, 2021 995

PINN Solution to Diffusion Models

7

0

1 1At the surface 0 : (0,) 0
4 2 x

dx y D
dx
φφ

=

= − = (12)

100

1 1At the surface 100 : (100,) 0
4 2 x

dx y D
dx
φφ

=

= + = (13)

0

1 1At the surface y 0 : (,0) 0
4 2 y

dx D
dy
φφ

=

= − = (14)

0

1 1At the surface y 100 : (,0) 0
4 2 y

dx D
dy
φφ

=

= + = (15)

A PINN solution of LCRM is more challenging due to the multi-region aspect of the problem and Neumann
type boundary condition included (Robin boundary is essentially a combination of Dirichlet and Neumann
boundaries). To obtain a PINN solution of LCRM, we approximate the function ϕ(x, y) by an NN model
net_ϕ(x, y). The weights and biases of this NN can be learnt by minimizing a loss function that accounts for
the boundary conditions of the problem and the diffusion model. Therefore, the loss function is constructed
with two loss mechanisms, the internal point loss due to the diffusion model and the boundary point loss
due the boundary conditions.

3.2.1. Internal points loss

The NN net_ϕ(x, y) is differentiated according to the diffusion model to construct the net_f(x, y) defined in
Eq.(9). The solution domain is sampled using the LHS strategy and a function is defined to assign proper
material properties and source term to each training point according to its location (core point or blanket
point). The loss associated with the internal points is defined according to Eq.(4) as follows

[]2

1

1Loss1 _ (,)
fN

i i
if

net x y
N

φ
=

= ∑ . (16)

3.2.2. Boundary points loss

For the boundary conditions, we define 4 sets of training data points with their coordinates located on the
corresponding boundary: Bottom, Top, Left, and Right. For each side, the corresponding ordinary
differential equation (ODE) from Eqs.(12) to (15) is applied. For example, the bottom boundary condition
is applied by defining a net_fB functional according to the bottom boundary shown in Eq.(14) as follows

0

1 1net_ : (,0) 0
4 2B

y

f x D
y
φφ

=

∂
= − =

∂
. (17)

We similarly define net_fT, net_fL, and net_fR for other three sides. Each function is then evaluated at the
corresponding training data set and the associated loss is defined according to Eq.(4). Therefore, the total
loss function due to the boundary loss is expressed as

Loss2 Loss Loss Loss Loss
B T L Rf f f f= + + + . (18)

The model net_ϕ(x, y) is trained by minimizing the loss function defined by the sum of the two loss functions

Loss Loss1 Loss2= + . (19)

3.2.3. LCRM Results

A systematic parametric study was performed first to understand the accuracy of PINN predictions for
different NN architectures and different numbers of training points. In all cases investigated, the hyperbolic

Physics-Informed Deep Learning Neural Network Solution to the Neutron Diffusion Model

Reduced-Order M
odels for Reactor Analysis

996 ANS M&C 2021 October 3–7, 2021

Elhareef, Wu, and Ma

8

tangent sigmoid transfer function is used as the threshold function for each activation connector in the
network, the training points generated based on the LHS strategy and Adam optimizer [14]; a mini-patch
stochastic gradient decent algorithm is used to minimize the loss function for fixed number of iterations
then the L-BFGS algorithm is used to complete the training until convergence criterion (maximum
component of the loss function gradient ≤ 10-11) is reached. For model verification, we used a finite element
method (FEM) solution as reference solution. The FEM solution was obtained through the mathematics
module in COMSOL Multiphysics software [15]. The output is then averaged to a 100x100 grid data to
achieve a point-to-point comparison with the PINN solution.

Table 2 shows the mean percentage relative error in PINN predictions compared with the reference solution
for fixed number of training points (10000 internal points and 25 boundary points per side surface) and
different NN architectures. As expected, increasing the number of hidden layers and the number of neurons
per layer increases the accuracy of PINN predictions, and the smallest relative error (0.73%) is achieved
for the NN architecture with 8 layers and 40 neurons per layer. Table 3 shows the mean percentage relative
error in PINN predictions compared with the reference solution for fixed architecture (8 hidden layers and
40 neurons per layer) and different numbers of internal and boundary points per side surface. For all cases
of the systematic studies, we trained the models using Adam optimizer for 105 iterations before training on
L-BFGS algorithm until convergence. The run time on Google Colab ranged from a few minutes to
approximately 80 minutes for the case of 10000 internal points and 1000 boundary point per side surface.

Table 2. Mean relative error (%) between PINN prediction and the reference solution for different NN
architectures (Nf = 10000 and Nb = 25).

Neurons

Layers
10 20 40

2 25.04 11.04 47.69
4 11.24 5.15 1.56
6 2.15 0.79 0.81
8 1.2 0.96 0.73

Table 3. Mean relative error (%) between PINN prediction and the reference solution for Nf and Nb with
fixed NN architecture (8 hidden layers and 40 neurons per layer).

 Nf

 Nb
2000 5000 10000

25 1.06 0.72 0.73
50 0.95 1.04 0.72
100 1.39 0.82 0.69
300 1.13 0.76 0.84

1000 0.91 0.74 0.69

The results of the parametric study showed that increasing Nb with a fixed Nf generally results in slightly
higher accuracy. Also, increasing Nf generally reduces the error. The study also confirmed the intuition
about the effect of increasing the number of hidden layers and the number of neurons per layer. Based on
these findings, the PINN model with 8 hidden layers and 40 neurons per layer contains was chosen for the
LCRM problem. We used a training set with 10000 internal points and 100 boundary points per side surface.
All points were generated based on the LHS strategy. The mean percentage relative error for this model is
0.69% with standard deviation of 0.74 and maximum error of 6.9%. The training time for the models is
about 80 minutes. Figure 5 shows the predicted flux net_ϕ(x, y) and the relative percentage point-wise

Physics-Informed Deep Learning Neural Network Solution to the Neutron Diffusion Model
Reduced-Order M

odels for Reactor Analysis

ANS M&C 2021 October 3–7, 2021 997

PINN Solution to Diffusion Models

9

errors compared to the reference solutions obtained by the FEM. Figure 6 shows the predicted flux along
the diagonal of the solution domain compared with the FEM solution. The error distribution as depicted by
figure 5 (b) and figure 6 suggests that the predictions of PINN slightly degraded around sharp gradient
regions (core-blanket interface). To further investigate the effect of the training points sampling approach,
we trained a model with the same architecture and the same 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 and 𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏 with training points density in the
interface vicinity approximately twice that elsewhere. The uniform, and non-uniform internal training
points distributions are shown in figure 7.

Figure 5. Heatmap view of the PINN predicted flux distribution (a) in whole domain and relative
percentage error distribution compared to the FEM solution (b).

Figure 6. Predicted flux and percentage relative error along the diagonal line of the solution domain.

Physics-Informed Deep Learning Neural Network Solution to the Neutron Diffusion Model

Reduced-Order M
odels for Reactor Analysis

998 ANS M&C 2021 October 3–7, 2021

Elhareef, Wu, and Ma

10

The results obtained by training on non-uniform training data points have mean percentage relative error of
0.63% with 0.59 standard deviation and 4.6% maximum error. The point-wise error distribution is shown
in figure 8. This result demonstrated the prior expectations about the gradient field can boost PINN solutions
by considering this expected gradient field in choosing the sampling strategy. Nevertheless, PINN method
showed robust predictions in wide range of 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 and 𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏 that were blindly sampled, and solutions with
acceptable accuracy were obtained even with the smallest sizes of training data sets considered.

Figure 7. Scatter plot of internal training data set (a) uniformly sampled, and (b) non-uniformly sampled.

Figure 8. Heat map of point-wise relative error distribution of PINN trained on non-uniform data set as
compared with FEM solution.

Through these numerical experiments, we simply investigated the effects of four parameters on the accuracy
of the PINN solution. Two parameters are related to the NN structure (number of hidden layers and number
of neurons per layer). The other two parameters are related to the number of samplings in the solution
domain (Nf and Nb). We also investigated the effect of clustering the training points around steep-gradient
regions. However, there are many parameters that we did not examine, including the NN architecture (e.g.,
the neuron activation function), the optimization algorithm parameters (e.g., learning rate schedule, training
stopping mechanism, etc.), and domain sampling technique. This large range of parameters implies that the
solution that we chose to present here may not be the best solution, but rather an optimum one. A better
solution or shorter run times can be obtained by addressing and tuning other parameters.

Physics-Informed Deep Learning Neural Network Solution to the Neutron Diffusion Model
Reduced-Order M

odels for Reactor Analysis

ANS M&C 2021 October 3–7, 2021 999

PINN Solution to Diffusion Models

11

4. CONCLUSIONS

In this work we applied the PINN approach to solve the diffusion equation with the zero-incoming flux
physics conditions. The one-group, two-dimensional, steady state, constant source diffusion equation is
used to model the LCRM problem. We started the PINN application by successfully duplicating the time-
dependent one-dimensional Burgers’ equation solution with Dirichlet boundary conditions. We then
extended this approach to diffusion equation on the two-region LCRM problem with the Robin type
boundary conditions. We formulated a loss function that accounts for losses associated with functions
represent the two regions of the solution domain as well as the boundary conditions, following with the
standard PINN methodology.

In the Burger’s equation example, we constructed a neural network with 9 hidden layers, 20 neurons per
layer, and hyperbolic tangent sigmoid activation function to predict the velocity field (,)u t x . We randomly
picked 10000 internal points, 100 boundary points, and 50 initial points as training data. Exact analytic
solution of the Berger’s Equation was used as a reference solution for comparison. The mean absolute error
of the obtained PINN solution was 5.01E-04. The error distribution shows that the errors are high around x
= 0, where the solution is appeared to have the steepest gradient with respect to the space variable.

For the LCRM example, a systematical parameter study was first performed to address the behavior of
PINN for different NN architectures and training point sets. The best PINN solution was achieved by using
a neural network with 8 hidden layers, 40 neurons per layer, and hyperbolic tangent sigmoid activation
function. We randomly picked 10000 training points to represent the entire solution domain. We used 100
points per side to represent the boundary conditions. We used a FEM solution obtained from COMSOL
Multiphysics as the reference solution. The mean relative error of the predicted flux is ~0.69%. The point-
wise relative error is uniformly distributed across the solution domain, however maximum errors were
observed to appear mostly at the core-blanket interface. To improve the model predictions around the
interface region, we resampled the space by making the training points density at interfaces twice that
elsewhere. This reduced the mean relative error to 0.63% and reduced the maximum error to ~4.6%.

The LCRM results demonstrated the applicability of the PINN to the diffusion equation for a simple reactor
problem. Though we achieved nearly the same level of accuracy of the flux solution compared with
conventional numerical method, the computational cost of the PINN approach at current state is a little
higher. However, by taking advantage of the state-of-the-art open source NN toolbox, the manpower efforts
needed for developing the PINN can be significantly reduced compared to that required for the conventional
method development. Furthermore, the PINN approach can be readily applied to more complex geometries
and versatile boundary conditions with very little sacrifice to the accuracy. In the future work, we are going
to extend the current work to the k-eigenvalues diffusion model as well as the transport models and higher
dimension problems. We also aim to examine the probabilistic PINN scheme [5] to perform uncertainty
analysis on the predictions and to allow training on experimental data.

REFERENCES

1. A. Karpatne et al., “Theory-guided Data Science: A New Paradigm for Scientific Discovery from
Data,” IEEE Transactions on Knowledge and Data Engineering, 29(10), pp. 2318-2331 (2017).

2. S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to Algorithms,
pp. 268-282, Cambridge University Press, New York (2014).

3. M. Raissi, P. Perdikaris and G. E. Karniadakis, “Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations,” Journal of Computational Physics, 378, pp. 686-707 (2019).

Physics-Informed Deep Learning Neural Network Solution to the Neutron Diffusion Model

Reduced-Order M
odels for Reactor Analysis

1000 ANS M&C 2021 October 3–7, 2021

Elhareef, Wu, and Ma

12

4. Z. Mao, A. D. Jagtap and G. E. Karniadakis, “Physics-informed neural networks for high-speed flows,”
Computer Methods in Applied Mechanics and Engineering, 360, p. 112789 (2020).

5. Y. Yang and P. Perdikaris, “Adversarial uncertainty quantification in physics-informed neural
networks,” Journal of Computational Physics, 394, p. 136–152 (2019).

6. A. S. Iskhakov, N. T. Dinh, “Physics-integrated machine learning: embedding a neural network in the
Navier-Stokes equations. Part I,” //https://arXiv preprint arXiv:2008.10509, (2020).

7. A. S. Iskhakov, N. T. Dinh, “Physics-integrated machine learning: embedding a neural network in the
Navier-Stokes equations. Part II,” //https://arxiv.org/abs/2009.11213, (2020).

8. B. Rokrok, H. Minuchehr and A. Zolfaghari, “Element-free Galerkin modeling of neutron diffusion
equation in X–Y geometry,” Annals of Nuclear Energy, 43, p. 39–48 (2012).

9. A. Griewank and A. Walther, Evaluating Derivatives, Principles and Techniques of Algorithmic
Differentiation, 2nd Edition, Society for Industrial and Applied Mathematics, Philadelphia, PA (2008).

10. M. Abadi et al., “Tensorflow: large-scale machine learning on heterogeneous distributed systems,”
arXiv:1603.04467 (2016).

11. M. O. Deville e. al., “Spectral and finite difference solutions of Burgers equation,” Computers and
Fluids, 14, pp. 23-41 (1986).

12. D. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,” Math.
Program, 45, p. 503–528 (1989).

13. M. D. Mckay, R. J. Beckman, and W. J. Conover, “A comparison of three methods for selecting values
of input variables in the analysis of output from a computer code,” Technometrics 42(1), pp. 55-61
(1979).

14. D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in the 3rd International
Conference for Learning Representations, San Diego, CA (2015).

15. COMSOL Multiphysics Reference Manual, COMSOL Multiphysics® v. 5.0, pp. 742-750 (2014).

Physics-Informed Deep Learning Neural Network Solution to the Neutron Diffusion Model
Reduced-Order M

odels for Reactor Analysis

ANS M&C 2021 October 3–7, 2021 1001

