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ABSTRACT

In this work, we employed physics-informed neural network (PINN) to solve the loosely 
coupled reactor model (LCRM) based on the neutron diffusion model. In particular, we solved
the two-dimensional, time-independent, constant source diffusion equation with zero-
incoming flux physics conditions, which were formed as generic Robin boundary conditions.
To demonstrate a clear understanding of the PINN approach, we started the investigation 
journey by solving the one-dimensional time-dependent Burgers’ equation with Dirichlet 
boundary conditions. We then extended the approach to solve the multi-region diffusion 
problem. We constructed a deep neural network that was constrained by diffusion equations 
representing the two regions of the LCRM and a set of ordinary differential equations 
representing the Robin boundary conditions. To verify the PINN solution, we used COMSOL 
Multiphysics software to obtain a finite element method (FEM) solution for the LCRM. The 
most accurate PINN solution for neutron flux we obtained has ~0.63% mean relative error 
compared with the FEM solution, which demonstrates the applicability of the PINN to the
diffusion model with Robin boundary conditions. Though the current form of PINNs is slower
compared with the conventional methods such as FEM, the manpower needed in PINN is
significantly reduced while keeping the same level of accuracy. Moreover, PINN can be readily 
extended to problems with complex geometries and versatile boundary conditions. 

KEYWORDS: Diffusion Equation; Deep Learning; Physics-Informed Neural Networks.

1. INTRODUCTION

Theory-guided data science (TGDS) is an emerging paradigm that aims to integrate specific scientific 
knowledge in data science. TGDS attempts to exploit the power of data science to obtain physically 
consistent models. TGDS leads to generalizable data analytics-based approaches that capture causative 
relations between input and output variables of any specific physics models. Karpatne et al. [1] 
conceptualized the paradigm of TGDS and described several implementation approaches. One of these 
approaches is on theory-guided constrained optimization. In this approach, a theory-guided constrained 
model such as the partial differential equation (PDE) model is imposed on the deep learning process for the 
solution. In other words, the learning procedure precludes any solution that violates the physics knowledge 
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about the system, which virtually creates a physics-informed learning environment that incorporates the 
specific physics into the learning solutions.

Neural Networks (NNs) can be considered as universal function approximators [2] that are trained to 
approximate any desired function with any desired precision. This capability enables the use of the TGDS 
paradigm based NNs to solve PDEs without the procedure of discretizing the solution domain. Physics-
informed neural network (PINN) is one TGDS type approach that uses the known mathematical description 
of systems to optimize the NNs [3]. PINN incorporates additional physics information into the NNs and 
achieves very accurate predictions of the physics model without the need of large training data sets as 
conventional supervised machine learning approaches.

PINN has been recently attempted in many engineering applications. Raissi et al. [3] developed a PINN
framework for solving forward and inverse problems based on non-linear partial differential equations 
(PDEs). They introduced two approaches to solve PDEs: continuous time models and discrete time models. 
Continuous time models require the solution domain to be sampled over its variables. In high-dimension 
systems, this approach may result in the need of large training sets and thereby long training time. Discrete 
time models, on the other hand, incorporate the classical Runge-Kutta time-stepping schemes to overcome 
the potential limitation on continuous time models. However, Raissi’s method does not guarantee 
convergence to a global minimum and does not resolve the problem of quantifying the uncertainty in the 
NN predictions. Mao et al. [4] investigated the possibility of using PINN to approximate the Euler equations 
that model high-speed aerodynamic flows. They have shown that PINN solutions for the Euler equations 
are more accurate when using training data clustered around discontinuous region compared with uniform 
training data. Yang and Perdikaris [5] introduced a class of probabilistic PINN that can be trained using 
noisy and incomplete data along with the physical laws to predict the system states. In their work, the NN 
model is used to approximate an arbitrary conditional probability density function of the observable output 
depending on its free variables and a collection of random latent variables. This approach reduces the need 
to repeat expensive experiments or numerical simulations and provides a method to quantify uncertainty in 
the NN predictions. Iskhakov and Dinh [6, 7] applied a physics-integrated neural network (note this is a bit 
different to the PINN concept) approach to the Navier-Stokes equations in a two-part paper. They devoted 
part I [6] to demonstrate the applicability of their framework to the 2D lid-driven cavity with non-constant 
velocity-dependent dynamic viscosity. Their framework consists of a system of PDEs (Navier-Stokes 
equations) with embedded deep feedforward NN (DFNN) to predict the velocity-dependent dynamic 
viscosity. The NN takes as input a velocity field and the predicted dynamic viscosity is then used as input 
to a PDE solver using Chorin’s projection method to calculate the velocity field. The NN learnable 
parameters is learnt by minimizing the mismatch between the initial and the calculated velocity fields. In 
part II [7], they further addressed the performance of their framework by considering two case studies: 2D 
turbulent lid-driven cavities with predicted with a DFNN (a) turbulent viscosity and (b) derivatives of the 
Reynolds stresses. Their results demonstrated the possibility of extracting unknown physical values by 
enforcing the physical knowledge on the field variables calculated using this physical values. 

In this work, we are exploring the potential of PINNs in nuclear reactor physics calculations. PINN is
advantageous for systems in which training data sets are small and the cost of acquiring data is high. It is 
capable of obtaining a generalizable model with a small data set by taking the advantage of the prior 
physical knowledge about the system. This is an intriguing feature for neutronics calculations because it is 
well-known high-fidelity reactor core simulation is time consuming and lacks of sufficient training data. 
The rest of the paper is organized as follows.  In Section 2, we briefly introduce the PINN method for 
solving a general PDE based problem. In Section 3, we present two numerical examples. The first example 
basically is a duplication of Raissi’s work on the Burgers’ equation to ensure the correct implementation of 
PINN in this work. The second example is a PINN solution of the loosely coupled reactor model (LCRM)
problem [8] based on neutron diffusion equation. Some concluding remarks on the PINN applications to 
neutronics calculations are offered in Section 4.
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2. METHODOLOGY

A general form for a non-linear PDE model may be described as a functional

1 2: ( ( , , , )) 0,nF Y x x x= =  (1)

where x1, ···, xn are independent variables, Y(x1, x2,···, xn) is a state function that satisfies Eq.(1), and ℕ is a 
non-linear differential operator. In the framework of PINN, Y(x1, x2, ···, xn) can be approximated by a NN 
model that predicts the value of Y at any point within the range of the independent variables. Denoting the 
NN model as net_Y(x1, x2,···, xn), we define a functional net_F as follows

1 2_ : ( _ ( , , , ))nnet F net Y x x x=   . (2)

The net_Y(x1, x2, ···, xn) will then be trained to predict the value of Y by penalizing the NN with a loss function 
that minimizes for the following two components: (1) the mismatches between the predictions net_Y and 
the known values of Y (e.g., boundary conditions); (2) the mismatches between predictions net_F and its 
exact values (i.e., 0 as implied by Eq.(1).

Under the PINN framework proposed by Raissi et al. [3], two sets of training data were defined, denoting 
as labeled set and unlabeled set, respectively. The labeled data set contains Nb points randomly picked from 
the known boundaries of the solution domain. The unlabeled data set contains Nf points randomly picked 
from the interior points. The loss function associated with labeled and unlabeled data sets are defined into 
a mean squared error (MSE) form as the following equations

2

1 2 1 2
1

1Loss _ ( , ,... ) ( , ,... )
bN

i i i i i i
b n n

ib

net Y x x x Y x x x
N =

 = − ∑ , (3)
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1 2
1

1Loss _ ( , ,... )
fN

i i i
f n

if

net F x x x
N =

 =  ∑ . (4)

The optimization of the NN learnable parameters (weights (w) and biases (b) of the NN) is achieved by 
minimizing the total loss function defined by

Loss Loss Lossb f= + . (5)

Figure 1 shows the loss function and the NN training procedure in the PINN framework [3].

Figure 1. A representation of the loss function definition and training process in PINNs.
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As shown in Eq. (2), the predictions of net_F require the derivative terms appear in the PDE model to be 
calculated at specific points in the solution domain. Many numerical approaches can be utilized to calculate 
the derivatives. One common way is to evaluate these derivatives by automatic differentiation (AD) 
techniques [9], which determines the derivative of a response to a parameter by applying the chain rules of 
derivatives at each step in the source code that produces the numerical results. In our application as shown 
in the following section, AD approach is used for the derivative evaluations, however, AD can realized by 
built-in capabilities of standard NN toolbox such as TensorFlow software [10]. This is extra bonus we 
would take when implementing PINN using existing NN open tools.

3. NUMERICAL EXAMPLES

In this section, we demonstrate the PINN applications to two PDE based examples. The first example is the 
Burgers’ equation [3, 11], which is a fundamental PDE that can be derived from the Naiver-Stokes equation 
for the velocity field by dropping the pressure gradient term. The second example is the LCRM problem,
which is described by a time-independent, one-group, two-dimensional (2D) diffusion equation with fixed 
sources.

3.1. Burgers’ Equation

The time-dependent one-dimensional (1D) Burgers’ equation along with Dirichlet boundary conditions and 
a user defined initial condition can be defined as follows

2

2

0.01: 0u u uf u
t x xπ

∂ ∂ ∂
= + − =
∂ ∂ ∂

, (6)

where x ϵ [-1, 1], t ϵ [0, 1], and the boundary and initial conditions are subject to

(0, ) sin( )u x xπ= − , (7)

( , 1) ( ,1) 0u t u t− = = . (8)

The PINN solution of the Burgers’ equation can be obtained by approximating the velocity field u(t, x) to 
an NN solution net_u(t, x), which can be differentiated according to the PDE to construct an NN 
approximated net_f(t, x) to approximate the functional f specified in Eq.(6). The loss function is defined in 
the manner as described in Eq.(5). In this work, the TensorFlow software [10] was used to create and train 
a deep network to predict the velocity field governed by the Burgers’ equation. The initial and boundary 
conditions were presented to the model in the form of set of 150 points associated with coordinates (t, x)
and the value of velocity (u) corresponding to each point according to Eq.(7) and (8). To construct net_f(t, 
x), a TensorFlow built-in function was used to calculate the required derivatives appeared in the PDE model 
shown in Eq.(6). These derivatives are calculated at a set of 10000 internal points. The data at the boundaries 
and inside the domain are used to estimate the loss function in order to optimize the PINN solution. 

Regarding the NN construction, the same NN structure and optimization algorithm recommended by Raissi
[3] were used. The NN model used in this example has 9 hidden layers and each layer contains 20 neurons. 
The hyperbolic tangent sigmoid transfer function is used as the threshold function for each activation 
connector in the network. The loss function was minimized using the L-BFGS approach - a quasi-Newton, 
full-batch gradient-based optimization algorithm [12]. The labeled data set contains 50 randomly picked 
initial points and 100 randomly picked boundary points. The unlabeled data set contains 10000 points 
generated based on the Latin Hypercube Sampling (LHS) strategy [13]. The model was trained for 60 
minutes with one laptop computer (22 minutes on a Google Collaboration GPU).  

Figure 2 shows a comparison between the analytical solution and the PINN model at t equal 0.25, 0.5, and 
0.75, respectively. The analytical solution of Burgers’ equation was provided by Cole and complied by 
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Benton and Platzman [11]. Figure 3 shows the full solution predicted by the PINN model as well as the 
absolute errors compared to the analytic solution. A uniform 101 × 101 grid points (including the initial and 
boundary points) along the time and space dimension were used for the point-to-point solution comparison. 
The mean absolute error of two set of solutions is 5.01E-04. These results indicate the PINN method has 
been clearly understood at our part and the efforts we made here successfully predicted the Burgers’ function 
in an acceptable level of accuracy. We are confident to extend these efforts to a diffusion model based 
reactor problem.

Figure 2. A comparison between PINN and analytical u(t, x) at t = 0.25, 0.5, and 0.75, respectively.

Figure 3. The PINN predicted u(t, x) distribution (top) and absolute point-wise errors distribution 
(bottom).
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3.2. Loosely Coupled Reactor Model Based on the Diffusion Equation

The one-group two-dimensional steady state diffusion equation can be described as:

: ( , ) ( , ) ( , ) ( , ) ( , ) 0af D x y D x y x y x y S x y
x x y y

φ φ φ
  ∂ ∂ ∂ ∂ = − + + Σ − =   ∂ ∂ ∂ ∂    

, (9)

where aΣ is the macroscopic absorption cross section, and D is the diffusion coefficient defined by:

1

1 1
3 3( )tr t s

D = =
Σ Σ −Σ

, (10)

and 1, ,tr t sΣ Σ Σ are the macroscopic transport, total, and anisotropic scattering cross section, respectively. 
For the isotopic scattering case, 1sΣ = 0, the diffusion coefficient can be reduced to:

( )
1 1

3 3t a s

D = =
Σ Σ + Σ

, (11)

where sΣ is the macroscopic isotropic scattering cross section.

In this work, we solved the LCRM example problem described in Ref. [8] based on diffusion equation 
shown in Eq.(9). The configuration of LCRM is shown in Figure 4. The model contains two regions: blanket 
and core region. Only isotropic source and scattering cross section are considered. The macroscopic cross-
sections and constant source strengths for the core and blanket regions are given in Table 1.

Figure 4. Geometry of the LCRM problem.

Table 1. Material Properties of the LCRM.

Region Material aΣ (cm-1) sΣ (cm-1) S (n/cm3)
Core 0.062158 0.089302 0.01048083

Blanket 0.064256 0.094853 0.00214231

Zero-incoming fluxes are assumed for all boundary surfaces of the problem, which can be expressed as 
Robin type boundary conditions as follows (with surface location specified in Figure 4):
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=
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0
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4 2 y
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=

= + = (15)

A PINN solution of LCRM is more challenging due to the multi-region aspect of the problem and Neumann
type boundary condition included (Robin boundary is essentially a combination of Dirichlet and Neumann 
boundaries). To obtain a PINN solution of LCRM, we approximate the function ϕ(x, y) by an NN model 
net_ϕ(x, y). The weights and biases of this NN can be learnt by minimizing a loss function that accounts for 
the boundary conditions of the problem and the diffusion model. Therefore, the loss function is constructed 
with two loss mechanisms, the internal point loss due to the diffusion model and the boundary point loss 
due the boundary conditions.

3.2.1. Internal points loss

The NN net_ϕ(x, y) is differentiated according to the diffusion model to construct the net_f(x, y) defined in 
Eq.(9). The solution domain is sampled using the LHS strategy and a function is defined to assign proper 
material properties and source term to each training point according to its location (core point or blanket 
point). The loss associated with the internal points is defined according to Eq.(4) as follows

[ ]2

1

1Loss1 _ ( , )
fN

i i
if

net x y
N

φ
=

= ∑ . (16)

3.2.2. Boundary points loss

For the boundary conditions, we define 4 sets of training data points with their coordinates located on the 
corresponding boundary: Bottom, Top, Left, and Right. For each side, the corresponding ordinary 
differential equation (ODE) from Eqs.(12) to (15) is applied. For example, the bottom boundary condition 
is applied by defining a net_fB functional according to the bottom boundary shown in Eq.(14) as follows

0

1 1net_ : ( ,0) 0
4 2B

y

f x D
y
φφ

=

∂
= − =

∂
. (17)

We similarly define net_fT, net_fL, and net_fR for other three sides. Each function is then evaluated at the 
corresponding training data set and the associated loss is defined according to Eq.(4). Therefore, the total 
loss function due to the boundary loss is expressed as

Loss2 Loss Loss Loss Loss
B T L Rf f f f= + + + . (18)

The model net_ϕ(x, y) is trained by minimizing the loss function defined by the sum of the two loss functions 

Loss Loss1 Loss2= + . (19)

3.2.3. LCRM Results

A systematic parametric study was performed first to understand the accuracy of PINN predictions for 
different NN architectures and different numbers of training points. In all cases investigated, the hyperbolic 
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tangent sigmoid transfer function is used as the threshold function for each activation connector in the 
network, the training points generated based on the LHS strategy and Adam optimizer [14]; a mini-patch 
stochastic gradient decent algorithm is used to minimize the loss function for fixed number of iterations 
then the L-BFGS algorithm is used to complete the training until convergence criterion (maximum 
component of the loss function gradient ≤ 10-11) is reached. For model verification, we used a finite element 
method (FEM) solution as reference solution. The FEM solution was obtained through the mathematics 
module in COMSOL Multiphysics software [15]. The output is then averaged to a 100x100 grid data to 
achieve a point-to-point comparison with the PINN solution. 

Table 2 shows the mean percentage relative error in PINN predictions compared with the reference solution 
for fixed number of training points (10000 internal points and 25 boundary points per side surface) and 
different NN architectures. As expected, increasing the number of hidden layers and the number of neurons 
per layer increases the accuracy of PINN predictions, and the smallest relative error (0.73%) is achieved 
for the NN architecture with 8 layers and 40 neurons per layer. Table 3 shows the mean percentage relative 
error in PINN predictions compared with the reference solution for fixed architecture (8 hidden layers and 
40 neurons per layer) and different numbers of internal and boundary points per side surface. For all cases 
of the systematic studies, we trained the models using Adam optimizer for 105 iterations before training on 
L-BFGS algorithm until convergence. The run time on Google Colab ranged from a few minutes to 
approximately 80 minutes for the case of 10000 internal points and 1000 boundary point per side surface.

Table 2. Mean relative error (%) between PINN prediction and the reference solution for different NN 
architectures (Nf = 10000 and Nb = 25).

Neurons

Layers
10 20 40

2 25.04 11.04 47.69
4 11.24 5.15 1.56
6 2.15 0.79 0.81
8 1.2 0.96 0.73

Table 3. Mean relative error (%) between PINN prediction and the reference solution for Nf and Nb with 
fixed NN architecture (8 hidden layers and 40 neurons per layer).

                 Nf

    Nb
2000 5000 10000

25 1.06 0.72 0.73
50 0.95 1.04 0.72
100 1.39 0.82 0.69
300 1.13 0.76 0.84

1000 0.91 0.74 0.69 

The results of the parametric study showed that increasing Nb with a fixed Nf generally results in slightly
higher accuracy. Also, increasing Nf generally reduces the error. The study also confirmed the intuition 
about the effect of increasing the number of hidden layers and the number of neurons per layer. Based on 
these findings, the PINN model with 8 hidden layers and 40 neurons per layer contains was chosen for the 
LCRM problem. We used a training set with 10000 internal points and 100 boundary points per side surface.
All points were generated based on the LHS strategy. The mean percentage relative error for this model is
0.69% with standard deviation of 0.74 and maximum error of 6.9%. The training time for the models is 
about 80 minutes. Figure 5 shows the predicted flux net_ϕ(x, y) and the relative percentage point-wise 
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errors compared to the reference solutions obtained by the FEM. Figure 6 shows the predicted flux along 
the diagonal of the solution domain compared with the FEM solution. The error distribution as depicted by 
figure 5 (b) and figure 6 suggests that the predictions of PINN slightly degraded around sharp gradient 
regions (core-blanket interface). To further investigate the effect of the training points sampling approach, 
we trained a model with the same architecture and the same 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 and 𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏 with training points density in the 
interface vicinity approximately twice that elsewhere. The uniform, and non-uniform internal training 
points distributions are shown in figure 7.

Figure 5. Heatmap view of the PINN predicted flux distribution (a) in whole domain and relative 
percentage error distribution compared to the FEM solution (b).

Figure 6. Predicted flux and percentage relative error along the diagonal line of the solution domain.
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The results obtained by training on non-uniform training data points have mean percentage relative error of 
0.63% with 0.59 standard deviation and 4.6% maximum error. The point-wise error distribution is shown 
in figure 8. This result demonstrated the prior expectations about the gradient field can boost PINN solutions 
by considering this expected gradient field in choosing the sampling strategy. Nevertheless, PINN method 
showed robust predictions in wide range of 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓  and 𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏   that were blindly sampled, and solutions with 
acceptable accuracy were obtained even with the smallest sizes of training data sets considered.

Figure 7. Scatter plot of internal training data set (a) uniformly sampled, and (b) non-uniformly sampled.

Figure 8. Heat map of point-wise relative error distribution of PINN trained on non-uniform data set as 
compared with FEM solution.

Through these numerical experiments, we simply investigated the effects of four parameters on the accuracy 
of the PINN solution. Two parameters are related to the NN structure (number of hidden layers and number 
of neurons per layer). The other two parameters are related to the number of samplings in the solution 
domain (Nf and Nb). We also investigated the effect of clustering the training points around steep-gradient 
regions. However, there are many parameters that we did not examine, including the NN architecture (e.g.,
the neuron activation function), the optimization algorithm parameters (e.g., learning rate schedule, training 
stopping mechanism, etc.), and domain sampling technique. This large range of parameters implies that the 
solution that we chose to present here may not be the best solution, but rather an optimum one. A better 
solution or shorter run times can be obtained by addressing and tuning other parameters.
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4. CONCLUSIONS

In this work we applied the PINN approach to solve the diffusion equation with the zero-incoming flux
physics conditions. The one-group, two-dimensional, steady state, constant source diffusion equation is 
used to model the LCRM problem. We started the PINN application by successfully duplicating the time-
dependent one-dimensional Burgers’ equation solution with Dirichlet boundary conditions. We then 
extended this approach to diffusion equation on the two-region LCRM problem with the Robin type 
boundary conditions. We formulated a loss function that accounts for losses associated with functions 
represent the two regions of the solution domain as well as the boundary conditions, following with the 
standard PINN methodology.

In the Burger’s equation example, we constructed a neural network with 9 hidden layers, 20 neurons per 
layer, and hyperbolic tangent sigmoid activation function to predict the velocity field ( , )u t x . We randomly 
picked 10000 internal points, 100 boundary points, and 50 initial points as training data. Exact analytic 
solution of the Berger’s Equation was used as a reference solution for comparison. The mean absolute error 
of the obtained PINN solution was 5.01E-04. The error distribution shows that the errors are high around x
= 0, where the solution is appeared to have the steepest gradient with respect to the space variable.

For the LCRM example, a systematical parameter study was first performed to address the behavior of 
PINN for different NN architectures and training point sets. The best PINN solution was achieved by using 
a neural network with 8 hidden layers, 40 neurons per layer, and hyperbolic tangent sigmoid activation 
function. We randomly picked 10000 training points to represent the entire solution domain. We used 100 
points per side to represent the boundary conditions. We used a FEM solution obtained from COMSOL 
Multiphysics as the reference solution. The mean relative error of the predicted flux is ~0.69%. The point-
wise relative error is uniformly distributed across the solution domain, however maximum errors were 
observed to appear mostly at the core-blanket interface. To improve the model predictions around the 
interface region, we resampled the space by making the training points density at interfaces twice that 
elsewhere. This reduced the mean relative error to 0.63% and reduced the maximum error to ~4.6%. 

The LCRM results demonstrated the applicability of the PINN to the diffusion equation for a simple reactor 
problem. Though we achieved nearly the same level of accuracy of the flux solution compared with 
conventional numerical method, the computational cost of the PINN approach at current state is a little 
higher. However, by taking advantage of the state-of-the-art open source NN toolbox, the manpower efforts 
needed for developing the PINN can be significantly reduced compared to that required for the conventional 
method development. Furthermore, the PINN approach can be readily applied to more complex geometries 
and versatile boundary conditions with very little sacrifice to the accuracy. In the future work, we are going 
to extend the current work to the k-eigenvalues diffusion model as well as the transport models and higher 
dimension problems. We also aim to examine the probabilistic PINN scheme [5] to perform uncertainty 
analysis on the predictions and to allow training on experimental data. 
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