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INTRODUCTION 

The understanding of the time-dependent behavior of 
the neutron population in a nuclear reactor due to either a 
planned change in the reactor conditions or abnormal 
operation conditions is of critical importance to the safe 
operation of nuclear reactors [1]. The description of the 
neutron flux distribution and the reactor power level and 
distribution could be obtained by solving the time-
dependent neutron forward diffusion equation. 

The neutron adjoint diffusion equation could be used 
for kinetics parameter calculations or in perturbation theory 
for the sensitivity analysis. For example, the adjoint solution 
can be used to calculate the change of effk due to the minor 
changes in the cross section of reactor core materials. The 
use of adjoint functions in perturbation theory and the 
application on reactor problems were first introduced to 
neutron transport equation by Wigner in 1945 [2]. He 
demonstrated that the adjoint neutron flux (i.e., the solution 
to the adjoint transport equation) could be used to assess the 
effects of perturbing the material properties efficiently in a 
critical nuclear reactor. Furthermore, Wigner also showed 
that the adjoint neutron flux could be interpreted as the 
importance in contributing to the detector responses [3]. 
However, partly due to exaggerated computation cost, the 
time-dependent adjoint equation is rarely solved either for 
diffusion or transport models in practical reactor 
applications. The typical practice in neutronics calculations 
is to solve the steady state adjoint equation and use the 
fundamental mode adjoint function as an approximation for 
all other dynamic states. This approach basically assumes 
the adjoint function would have small variations during the 
state transitions. This assumption works well for most fast 
transient situations, but will render non-negligible errors for 
slow transient phenomena in reactor physics if the adjoint 
solutions heavily relied on sensitivity or kinetics parameter 
calculations.  

In this paper, we will obtain the time-dependent 
forward and adjoint solution of the one-dimensional two-
group neutron diffusion equation for the spatial reactor 
kinetics problems. The numerical approaches to solve these 
equations are based on the finite difference method for the 
spatial discretization and semi-implicit method for the time 
discretization. For general application purpose, the 
generalized temporal and spatial boundary conditions for 
both the forward and adjoint models are considered. To 
demonstrate the applicability and validation of the presented 

method, a rod-ejection accident in a one-dimensional reactor 
problem is considered as a test problem.  

The rest of the summary is organized as follows. 
Section 2 describes the time-dependent one-dimensional 
two-group neutron forward diffusion equations and adjoint 
diffusion equations. Section 3 outlines the numerical 
scheme of the method with semi-implicit method for the 
time discretization and finite difference method for the 
spatial discretization. The computational framework of the 
flux solver and the strategy to improve the computation 
efficiency are also included in Section 3. The test problem 
solved by the proposed method and numerical results are 
presented in Section 4. Finally, the conclusions of the 
current study and future work are summarized in Section 5.  

 
GOVERNING EQUATIONS 

Forward Diffusion Equations 

The time-dependent one-dimensional two-group 
neutron forward diffusion equations coupled with multi-
group delayed neutron precursor (DNP) equations are 
described as follows 
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where ( , )g x tφ , ( , )gD x t , , ( , )a g x tΣ , , ( , )r g x tΣ , , ( , )f g x tΣ   
are the space and time dependent neutron flux, diffusion 
coefficient, absorption cross section, removal cross section, 
and fission cross section in energy group g , respectively; 

,1 2 ( , )s x t→Σ  is the scattering cross section from fast group to 

thermal group; β  is the delayed neutron fraction; ( , )kC x t  
is the group k DNP concentration, which is also a space-
time dependent variable, and K is the total number DNP 
groups; and kλ  is the decay constant for the group k DNP. 
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Without the loss of generality, the space-time domain 
of the one-dimensional problem can be considered within 
the following domain   

 0 ,      0x L t T≤ ≤ ≤ <  (2) 

such that the reflective boundary conditions (B.C.) and a 
prescribed initial condition (I.C.) can be defined as 
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For the DNP equations, only initial conditions are needed. 
They can be defined similarly 

 0( ,0) ( ),      1, , .k kC x C x k K= =   (4) 

Adjoint Diffusion Equations 

Based on the definition and properties of adjoint 
operation [4], the adjoint diffusion equations associated with 
the forward diffusion equations can be derived as 
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The adjoint equation will be solved reversely in the time 
domain. The boundary conditions and the final condition 
(F.C.) of the adjoint diffusion equation can also be obtained 
as 
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where 0 ( )g xφ is the initial state or steady state forward flux, 

0 ( )g xφ∗ is the steady state adjoint flux, and ( , )g x Tφ is the 
final state forward flux. Similarly, the final conditions for 
DNP equations are 

 0
0

( )
( , ) ( ) ,   1, , .

( , )
k

k k
k

C x
C x T C x k K

C x T
∗ ∗= =   (7) 

 

 

NUMERICAL METHOD 

Standard numerical approaches are employed to solve 
the forward and adjoint diffusion equations. The spatial 
variable is handled by the finite difference method, and the 
time variable is treated with the semi-implicit method. The 
mesh size and time step used in the calculation are small 
enough to minimize the discretization errors. The 
generalized temporal and spatial boundary conditions for 
the adjoint equations shown in Eqs. (6) and (7) are 
considered for a general application. 

Initially, an iteration framework is used to solve for the 
flux in the time-dependent diffusion equations. To reduce 
the computational cost and improve the computation 
efficiency, the flux iteration algorithm is replaced with a 
direct matrix inversion approach that solves the two group 
fluxes simultaneously. 
 
TEST PROBLEM AND NUMERICAL RESULTS 

A rod-ejection accident in a one-dimensional reactor 
problem is considered as a test problem to demonstrate the 
applicability and validation of the presented method [5]. As 
depicted in Fig. 1, the reactor consists of 12 cells with 
different materials, there are 15 uniform mesh intervals in 
each cell, so in total 300 meshes are considered. There are 
three regions in the axial direction: reflector, unrodded fuel, 
and rodded fuel. Reflective boundary conditions are 
considered in this problem. The length of the fuel rod is 300 
cm. More description of this problem can be found in Ref. 
[5]. 

During the rod-ejection accident, the control rod is 
assumed to be withdrawn from beginning to 4.0 s with a 
speed of 25 cm/s, later the control rod is inserted from 4.0 s 
to 10.0 s with the same constant speed. A uniform time step 
which is 0.5 s is considered in this problem. 

 
Fig. 1. Geometry of the one-dimensional reactor [5]. 
A computer code based on MATLAB was developed to 

solve the two-group forward and adjoint diffusion equations 
in the one-dimensional system. Before performing the time-
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dependent analysis, the steady state condition before the 
rod-ejection was examined as a criticality calculation. The 
k-eigenvalue mode one-dimensional two-group forward 
diffusion equation was solved essentially. The effk  obtained 
at the initial time of the reactor is 0.978821. This value 
agrees well with the result for the test problem in Ref. [5], 
which verifies the correct implementation of our code. For 
the dynamics behavior, the power changes of the slab 
reactor during the rod-ejection accident was calculated.  

Fig. 2 shows the evolution of the normalized mean 
power into the accident. The normalized power increases 
with the control rod withdrawal from 0.0 s to 4.0 s, then 
starts to decrease due to the insertion of the control rod.  
This result showed in Fig. 3 is obtained from our own 
diffusion code. Compared to the best result from the moving 
mesh scheme proposed in Ref. [5], the maximum error is 
less than 1.13%. Moreover, compared with the results from 
the neutronic code PARCS which were taken as a reference 
in Ref. [5], the maximum error is less than 0.93%. All these 
results indicate our diffusion code has achieved solutions 
that have a good agreement with the ones in Ref. [5], which 
verifies the accuracy of our code to a certain degree. 

 
Fig. 2. Normalized power evolution for the 1D reactor. 

In the course of calculations, we initially used an 
iterative approach to calculate the fluxes and noticed it 
requires more than 1000 iterations at each time step to reach 
a converged solution with a reasonable tolerance. To reduce 
the computational cost and improve the computation 
efficiency, we eliminated the flux iteration algorithm and 
replaced it with a direct matrix inversion approach that 
solves the two group fluxes simultaneously. After 
implementing this method, the total calculation time was 
reduced from 5.48 s to 0.19 s, which indicates that the direct 
matrix inversion method indeed improved much the 
computation efficiency in solving the time-dependent two-
group forward diffusion equations. 

The adjoint equations were solved similarly in our code 
using the numerical approaches discussed earlier. Fig. 3 
illustrates the adjoint solutions obtained at the initial time by 

solving the adjoint equation backward in time starting from 
the final time back to the initial time. These adjoint 
solutions are compared with the adjoint solutions calculated 
at steady state. As indicated in Fig. 3, the initial time adjoint 
solutions agree well with the steady state adjoint solution, 
which confirms that the numerical method is correctly 
implemented in the code and obtained reasonably accurate 
solutions because the adjoint solutions at the initial time are 
assumed to converge to the steady state adjoint solutions. 

 
Fig. 3. Adjoint solutions at the initial time. 

For transient behaviors, Fig. 4 shows the neutron flux 
distributions at various times into the rod-ejection accident. 
As shown in Fig. 4, the neutron flux increases overall with 
the control rod withdrawal from 0.0 s to 4.0 s, then starts to 
decrease overall after the insertion of the control rod.  
 

 
Fig. 4. Fast neutron flux (A) and thermal neutron flux (B) 

distribution during the rod-ejection accident. 

The adjoint solutions indicates the importance of 
contributing to a specific quantity of interest. Fig. 5 
illustrates the fast and thermal adjoint functions 
corresponding to the criticality status of the reactor at 
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different transient time steps. It clearly shows the shape and 
magnitude of the adjoint functions will involve substantial 
changes along with the rod-ejection procedure, which 
confirms the values of the time-dependent adjoint 
calculations.  
 

 
Fig. 5. Fast adjoint (A) and thermal adjoint solution (B) 

distribution during the rod-ejection accident. 
Wigner stated that the adjoint neutron flux could be 

interpreted as the importance of contributing to the detector 
response [2]. To better understand the physical meaning of 
the adjoint neutron flux, we assume there is a neutron 
detector placed at the middle of the third cell of the reactor 
core.  

The typical response R  is chosen for the reading of 
detector [3], which could be given by the reaction rate 
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where ,d gΣ represents the detector’s equivalent reaction 

cross section at the location dx for different groups of 
neutron flux. The ,1dΣ  and ,2dΣ  in this problem are 
assumed to be 0.01 and 0.1, respectively. The adjoint source 
is defined as a delta function in this problem. Then the 
adjoint equation with adjoint source become 
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Fig. 6 shows the fast adjoint solutions and thermal adjoint 
solution variation during the rod-ejection accident, which 
represents the neutron importance distribution for the 
designated detector response R. 

 
Fig. 6. Fast adjoint (A) and thermal adjoint (B) for R. 

CONCLUSIONS 

In this work, a MATLAB code based on the time-
dependent one-dimensional two-group neutron forward and 
adjoint diffusion models are developed for spatial reactor 
kinetics problems. The numerical approaches are based on 
the finite difference method for the spatial discretization and 
semi-implicit method for the temporal discretization. A 
generalized temporal and spatial boundary conditions for 
both the forward and adjoint models are considered. To 
assess the capability and accuracy of the developed code, it 
is applied to the rod-ejection accident in a one-dimensional 
slab reactor. The computational results of the test problem 
demonstrate that the code is capable of outputting 
reasonably accurate solutions in both forward and adjoint 
modes. To reduce the computational cost, the flux solver in 
the code is improved by eliminating the iteration algorithm. 
In the future, the time-dependent adjoint solution will be 
used in the perturbation theory for dynamics sensitivity 
analysis. For instance, it can be used to calculate the time-
dependent effect on sensitivity of effk  due to the minor 
changes in cross section of reactor core materials. 
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