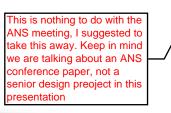


Space Nuclear Thermal Propulsion (NTP) Conceptual Design Utilizing Modular High-Temperature Gas-Cooled Reactor (HTGR)

Arthur E. Chadwick, Meryem E. Murphy, Ryan Blackwell, Danny Monge, Zeyun Wu, Ph.D.

Virginia Commonwealth University


Senior Design Capstone Team MNE 21-512, Dept. of Mech. and Nucl. Engr.

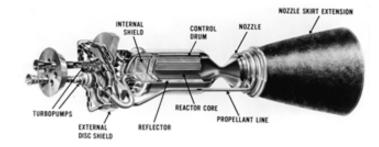
Today's Discussion

- Executive Summary
- Background
- Design Criteria
 - Goals
 - Objectives
 - Design Specs/Constraints
 - Codes and Standards

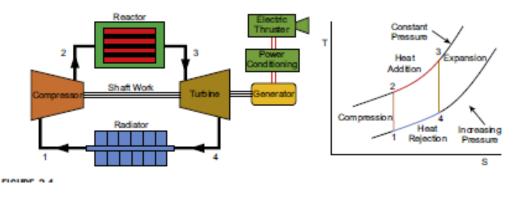
- Design Methodology
 - Design Philosophy
 - Hands Calculations
 - Detailed Calculations
- Preliminary Results
 - CONOPS
 - Preliminary Design
- Additional Design Considerations

• Project Timeline

2

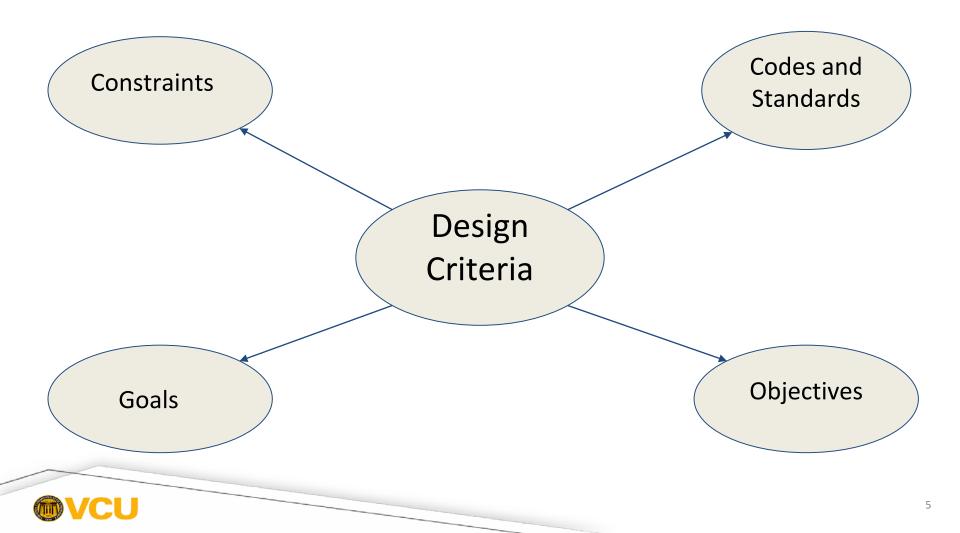

Executive Summary

- Referencing NASA NERVA Project
- Specific Impulse is important for cost and objective
- HTGRs
- CAD/CFD
- Our Design



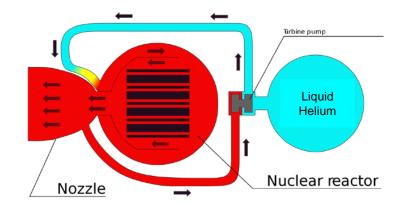
Background

- VCU Senior Design Capstone Team
- NASA NERVA Project Schematic
- HTGRs vs LWRs
- Moderator, Coolant
- Brayton Cycle



Dogdge, R. M. (1965). The NERVA Nuclear Rocket Reactor Program. Retrieved from https://www1.grc.nasa.gov/wp-content/uploads/NERVA-Nuclear-Rocket-Program-1965.pdf

Emrich, William. *Principles of Nuclear Rocket Propulsion*. Butterworth-Heinemann Ltd, 2016.


Goals

Objectives

- Find time usage, estimated power, top flight speed, etc
- Design a theoretical NTP system
 - propellant tanks
 - pump
 - nozzle
 - reactor core
 - payload volume
 - structure

Design Specifications and Constraints

- Functional Constraints
 - operate w/o maintenance
 - high/low extreme temperatures
- Manufacturing Constraints
 - small/lightweight for commercial rocket fairing volume
 - shielding against radiation
 - small-scale CFD
- Codes/Standards Constraints

Codes and Standards

Design Methodology

- Design Philosophy
- Assumptions
- Hand Calculations
- Detailed Calculations

Design Philosophy

 \overline{F}

- Principles of Nuclear Rocket Propulsion
- Types of HTGRs
 - Prismatic Block Reactors (PMRs)
 - Pebble Bed Reactors (PBRs)
- Radiation Shielding
- Properties of Graphite
- NERVA

what would you plan to talk about this here? Do we have a preferred reactor with this discusssion?

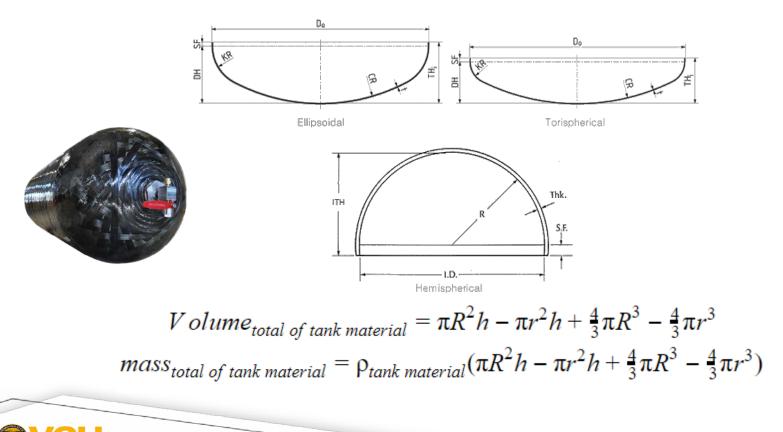
Hand Calculations

$$m_{in} = m_{out}$$

• Conservation of Mass

- Velocity
- Max Attainable Velocity

 $I_{sp} = \sqrt{2Q/(m_{dot} * g_c^2)}$

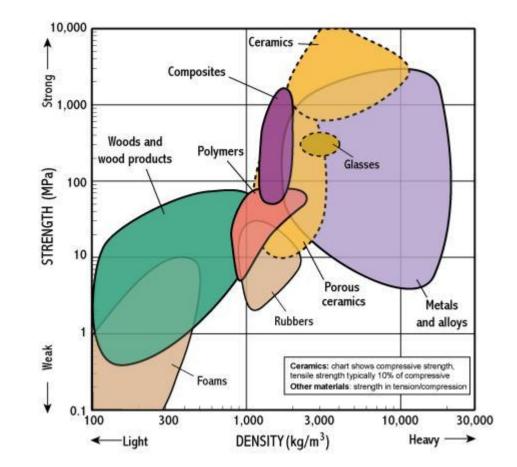

$$V = \frac{m_{dot}}{\rho A}$$

$$V_f = -g_c I_{sp} ln(m_f/m_0)$$

 m_f is the vehicle dry system mass and m_0 is the fully fueled vehicle mass

Hand Calculations

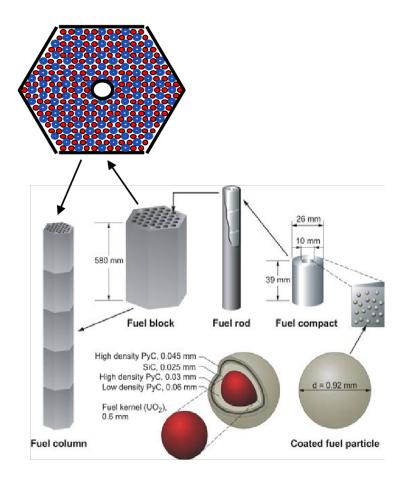
• Pressure Vessels - Composite Overwrapped Pressure Vessels (COPVs)


Hand Calculations

- Material Properties
- Heat Transfer (Q)
- Reynold's Number (Re)

 $Q = hA(T - T_{\infty})$


$$Q = \kappa \frac{dm'}{dx}$$
$$Re = \frac{4m'}{\pi D\mu}$$


O = L dT

Detailed Calculations

- CAD Design
- CFD Analysis
- Thermal Systems Design
- Reactor
- Nozzle

Detailed Calculations

%%writefile seniordesigncalcs.m

%%INPUTS%% 0 = 350; %power of reactor (MWth)

m = 25; %mass flow rate (kg/sec)
T_in = -268.95; %C (4.2K)

r = .0001; %outer radius of fuel compact (m) Calculate the amount of triso particles, and size dependent on power

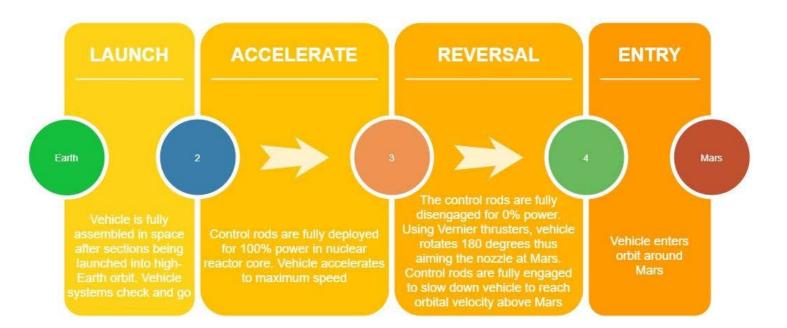
- c_p = 1.8154; %J/gK assume P1 in 6.39 MPa
- rho_in = 193.3; %(kg/m^3) of He @4.2K
- height_fuel_compact =1; %? %full length of pipe (m) assume a certain length I guess
- f = 0.2; %pipe friction factor for graphite (temperature dependent)
- D = r*2; %
- P1 =6.39; %pressure rating (MPa) (assumption from danny's paper)
- k = 0.034760 %thermal conductivity (NIST) (W/(m*K))
- P=r*2*pi %wetted perimeter (m) (also circumference)
- mu = 0.001; %(Pa*s) %dynamic viscosity find dynamic visc

volume_fuel_compact=pi*r^2*height_fuel_compact; %volume of a single fuel compact

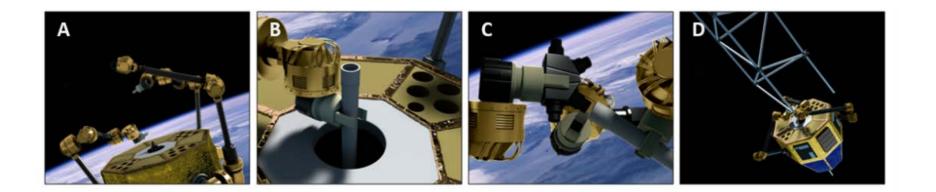
%Control Rod Inputs% We basically have nothing for this so far Number_of_triso_particles = 100000 Power_per_pellet = Q/Number_of_triso_particles; %(MWth) %Number_of_absorbed_neutrons = %Number_of_fuel_pellets = %Power_of_each_fuel_pellet =

Inputs:				Outputs	:	
Variable/Parameter (units):	Value:	Reasoning:	Link/Source:	Variable/Parameter (units):	Value:	Reasoning:
total pressure, Pt (kPa)	10000	arbitrary value	NASA slide	mass flow rate (kg/s)	25	assumption
temp of He after leaving core = total		arbitrary value, average				
temperature, Tt (K)	2773.15	nozzie temp of a NTP				
			NASA slide	exit temperature (K)	1273	design objective
free stream pressure = static pressure of the free stream P0 (kPa)		property of space	NASA slide	exit pressure (kPa)	37,59679049	
specific heat ratio, gamma		property of space	NAGA side	ext velocity (m/s)	37.59679049	
gas constant, R (kJ/kgK)		property of helium	NASA slide	thrust (N)	9050.839367	
exit area, Ae (m*2)		arbitrary value	principle of NTR book (specific inquise (see)	6.05050064	
exit mach, Mach, Me, M	20	arbreary value	principle or in the boom of	abecount and an and a set		
(dimensionless)	5	arbitrary value	hilps://risinco.org/coll	ideal impulse (see)	26-32160001	
molecular weight of He (u)	4.0026	property of helium				
temp of liquid He in the tank (K)	4.2	property of helium		specific power kW/kg(U)		
				Time it will take to get to Mars using		
coolant/propellant volume (m*3)		arbitrary value	https://ai-solutions.com	Hohmann transfer orbit (days):	259	definition. Lower limit. Aim to go fas
tank mass (kg)	10000	arbitrary value	https://www.jpl.nasa.go			
payload mass (kg)		arbitrary value		Dry Mass of Vehicle = Initial Mass (kg)		calculation
reactor core mass (kg)	500	arbitrary value		Wet Mass of Vehicle (kg)	51646	calculation
nozzle mass (kg)	100	arbitrary value		Change of Mass of Vehicle:		
turbopump mass (kg)	40	arbitrary value		Specific Impulse using Danny's formula (sec)	578.84	Q=1/2mdotgc2Isp2
				Speed of Vehicle Orbiting Mars (m/s)		
propellant mass (kg)	20000	arbitrary value	https://www.physicsclas	Acceleration of Vehicle Orbiting Mars (m/s*2)		
			https://www.physicsclas	Orbital Period of Vehicle Orbiting Mars (sec)		
Pressure at nozzle (Mpa)	6					
				Maximum velocity attainable (m/s)	2770.73	
NASA Silde explanation!						
wWWWK-12/airplane/isentrop.html						
5u/full/2005ESASP.563_373Z						
wWWWK-12/rocket/thrsteg.html						
y of He at Temp_tank = 4.2 K (m*3/kg)	191,45	arbitrary				
He at Temp_nozzle = 1273 K (m*3/kg)	2.2574	arbitrary				
f nozzle (smallest cross-section) (m*2)	0.10	arbitrary		velocity of propellant out of turbopump (m/s)	1.283	calculated
sa of pipe right out of turbopump (m*2)	0.10	arbitrary		Volume of tank (m*3)	3829000	calculated
Area of pipe around core (m*2)	12.57	arbitrary		velocity of propellant out of nozzle (m/s)	108.80	calculated

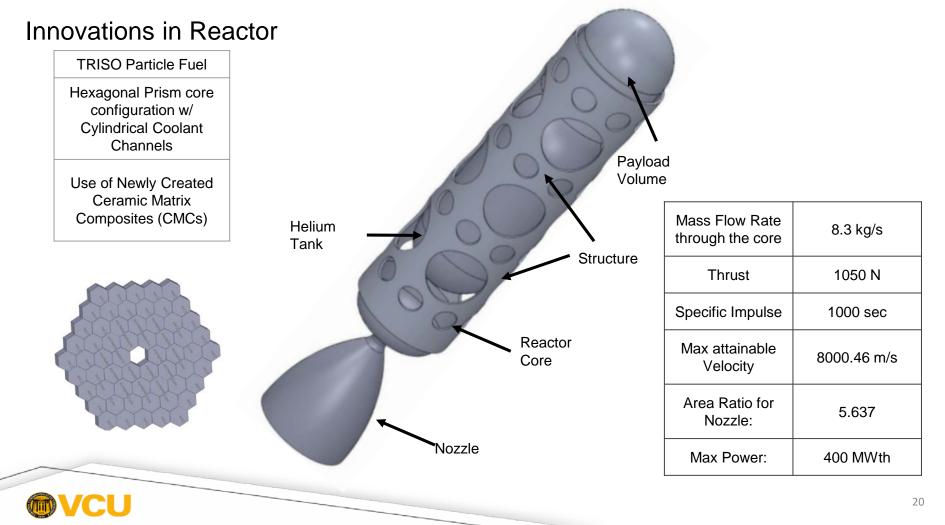
what exactly this calculations for?


Preliminary Results

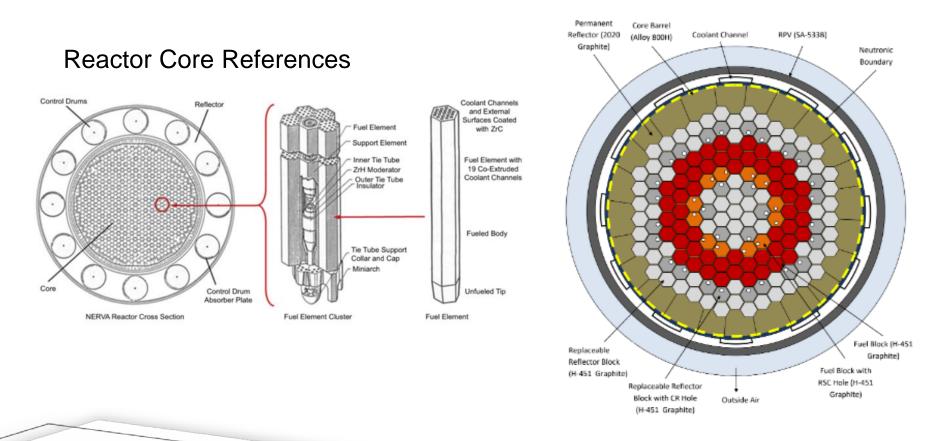
- CONOPs
- Preliminary Design


CONOPS (Concept of Operations)

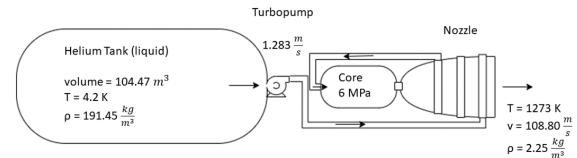
- Earth to Mars
- In-Space Manufacturing Assembly



CONOPS (Concept of Operations)

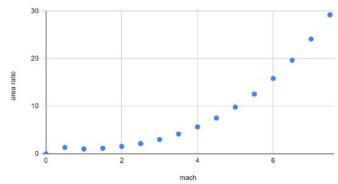

- Earth to Mars
- In-Space Manufacturing Assembly

Preliminary Design

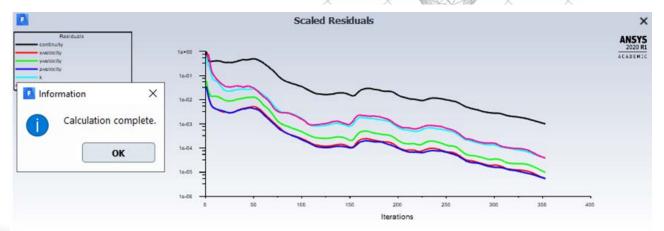


Preliminary Design

Preliminary Design

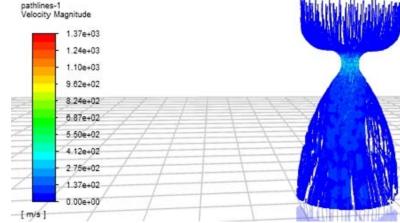

- Additional Preliminary Design Values
- Estimated Mass

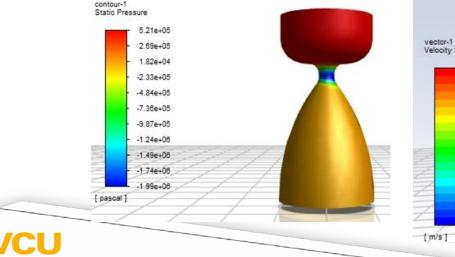

Parameter	Value (kg)
Dry Mass	53670
Wet Mass	73670
Propellant Mass	20000
Core Mass	50000
Turbopump Mass	70
Nozzle Mass	100
Tank Mass	3500

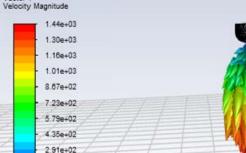

Parameter	Value (K)
Average Fuel Temp	2244.38
Average Moderator Temp	2040.76
Average Propellant Temp	2023.08
Re, at steady state, coolant through the core	162,399.85

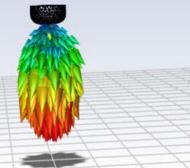
Area Ratio vs. Mach Number


Preliminary Design - Nozzle Analysis

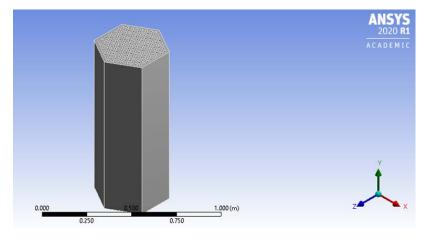


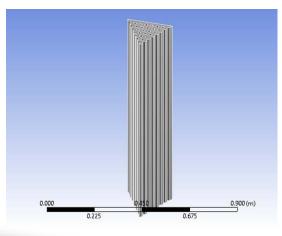



Preliminary Design - Nozzle Analysis



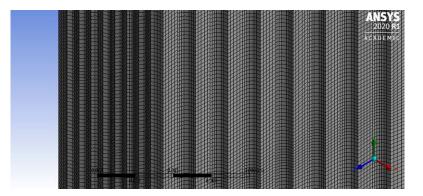
Velocity Vectors Colored By Velocity Magnitude (m/s)

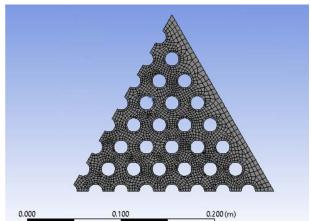

1.46e+02 2.28e+00

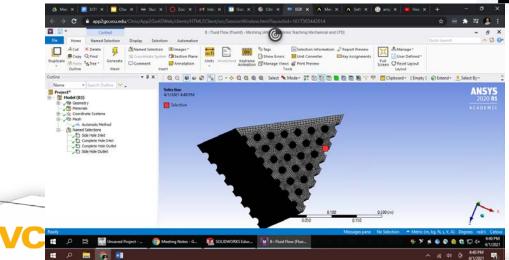


24

Preliminary Design - Core Analysis


	ept Cut Ited Cut	Pillet Lin Pal	Rib Rib Rib Rib Rib Rib Rib	Wrap Intersect	Reference Geometry	Curves Insta	int3D
👏 Во	undary Cut		- 🧊 Shell	Mirror	•		
dd-Ins	Simulation	MBD	Analysis Prep	aration			




Preliminary Design - Core Analysis

0.150

0.050

Additional Design Considerations

- Political Environment
- Fear
- Economics
- Global Impact
- Environmental Impact

Project Timeline

No needed for this talk

Activity/Task	Start	Due	Days	÷	Se	ent	Ť		-	Oct	; 		İ-	<u> </u>	Nov	,	Nov						Jai	0	Ť	Feb				_	Ma	ar	Ť	_	Ap	ar i	\rightarrow	May		
Project Proposal	Start	Due	Days	11	2	<u>.</u>	4	1	2		-	5	1		_		5	1	2	ec 3	4	1	_	-	4	1	_	-	4	1	_	3	4	1	2		4		2	
Executive Summary	1-Sept	1-Oct	30	X	X	X	X	÷	-	-		-	<u> </u>	+-	÷	1	Ē		-	-	-		-	Ť	÷	÷	-+	Ť	-	-	-	-	÷	-	-	Ť	H	Ë	Ηł'	
Introduction	1-Sept	-				x	x							1	-									-	+	+	+	+							+	-		\square	\vdash	
Project Definition	1-Sept		30			x	x							1	-									-	+	+	+	+							+	-		\square	\vdash	
Scope	1-Sept					x	x			\square				\vdash											\pm	+	+	+							+			\square	[+]	
Deliverables	1-Sept			X		x	x			\square				\vdash											\pm	+	+	+							\pm			\square	[+]	
Organization	1-Sept	-		X			x							\vdash	-										\pm	+	+	+							+	\pm		\square	(-1)	
Timeline	1-Sept			X	x		x							-																								\square	[-1]	
Project Proposal Submission	1-Oct		1	1	-	~	M							-																								\square	[-1]	
Preliminary Design Report																																						\square	[-1]	
Initial Design	14-Oct	30-Oct	17					X	Х	Х	X	X	Х	Х	X	Х	х																					\square	[-1]	
Hand Calculations for Preliminary Design	21-Oct									Х	X	X	х	X	х																							\square	[-1]	
Prelim. Design Report Submission	4-Nov		31							_			Х	Х	х																							\square	[-1]	
Final Design																																						\square		
CFD Analysis and CAD Model of Iteration 1	1-Sept	14-Apr	133																					J	X	X	X	Х	Х	Х	Х	Х	Х					\square		
Optimization		14-Apr																							Т													\square		
Final CAD Model	14-Apr		1																																М			\square		
EXPO Abstract/EXPO Poster																																						\square		
Abstract	4-Dec	16-Apr	133																					J	X	XI	X	Х	Х	Х	Х	Х	Х					\square		
Poster	4-Dec		133																					J	X	X X X	X	X	Х	Х	Х	Х	Х					\square		
Presentation	16-Apr		1																																М			\square		
Final Design Report / Prototype (if applicable)																																						\square'		
Completion of FDR & Analysis	16-Apr	3-May	17																																			\square'		
Final Design Report Submission	3-May	3-May	1																																		М	\Box'		

Questions

Thanks to members of the MNE 21-512 Senior Design Team

D. Monge M. Murphy R. Blackwell Z. Wu A. Chadwick

www.linkedin.com/in/arthurchadwick