

A LCOE Estimation on HALEU Fuels for Small Modular Reactors

Liam Carlson¹, Zeyun Wu¹, James Olsen², Emily Liu²

¹Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University ²Department of Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic Institute,

November 18, 2020

SMRs and Micro-Reactors (1/2)

• **SMRs** (<300 MWe)

- Small Modular Reactors
- Factory Manufactured Components

• Microreactors (<15 MWe)

- Transportable as unit

• Unique Advantages:

- Modularity
- Low Capital Cost
- Passive Features
- Reduced Risk of Outage
- Geographic Benefits

Figure 1: Illustration of Rolls-Royce reactor module. Retrieved from IAEA website. https://www.iaea.org/newscenter/news/small-modular-reactors-a-challenge-for-spent-fuel-management

SMRs and Micro-Reactors (2/2)

Table 1. Development of Various SMR and Micro-Reactor Designs

Reactor	tor Capacity Type		Developer	Nation	Project Status
CAREM-25 27 MWe		Integral PWR	CNEA & INVAP	Argentina	Under Construction
HTR-PM	HTR-PM 210 MWe		INET, CNEC & Huaneng	China	Under Construction
NuScale	45 M\\/e	Integral PWR	NuScale Power		Near-Term
	-5 101000			UUA	Deployment
BWRX-300	300 M\\/o	BW/R	GE Hitachi		Near-Term
	500 101006	DVVIX		USA	Deployment
Intogral MSP		MQD	Terrestrial Energy	Canada	Near-Term
		WOR	Terrestrial Energy	Canada	Deployment
Xe-100	Xe-100 75 MWe		X-energy	USA	Early Stages
Aurora	1.5 MWe	Heatpipe FNR	Oklo	USA	Early Stages
Sealer	3-10 MWe	Lead FNR	LeadCold	Sweden	Early Stages

HALEU Fuel

• Definition

- High-Assay Low-Enriched Uranium
- Enrichment: 5-20 wt% U-235
- Various chemical compounds
 - Oxide, carbide, nitride, etc...

• Benefits

- Increased capacity factor or power
- Reduction in overall refueling costs
- Marginal change in capital and O&M costs

Costs

- Greater Fuel Cost
 - Mining & Milling, Conversion, Enrichment, Fabrication
- No existing supply chain
- Increased Transport Costs
- Possible Reduction in Operation Lifetime

Figure 1: Illustration of Uranium Oxide Fuel. Retrieved from World Nuclear Association website. https://www.worldnuclear.org/nuclear-essentials/how-is-uranium-made-intonuclear-fuel.aspx

Overview

- Explain method for determining Levelized Cost of Electricity (LCOE) for higher enriched reactor designs
 - Case study of existing PWR type SMR design
 - Briefly discuss simulation of reactor and fuel enrichment optimization
 - Derive HALEU LCOE as function of reported LCOE of standard design
- Analyze core loading cost of various enrichments (5-20 w/o)
- Establish criteria for analyzing economic viability of HALEU fuel for the chosen reactor design
- Report results for fuel enrichment, LCOE reduction, and total plant savings due to increased cycle time

Method

Case Study:

- NuScale 160 MWth Reactor
- PWR type SMR
- Simulate Reactor: Enrichment was optimized to increase cycle length from 24 months to 48 months
- 2. Establish Relationship: Linear reactivity model used to create relationship between fuel enrichment and reactor burnup
- 3. Find Levelized Cost of Electricity (LCOE): Optimal fuel enrichments used to estimate LCOE values with reported LCOE of standard design as input
- 4. Plant Savings: Estimation of total net benefit due to fuel enrichment increase

Simulation & Optimization

Simulation

- *Simulation*: CASMO/SIMULATE
- Verification: MCNP
- Enrichments: BRACC

Optimization

- Fuel Enrichments adjusted to optimize pin peak power factors (PPPF) across each assembly
- Core loading scheme unchanged

BP locations have smaller peaking factors.

Optimized EOC Pin Power Peaking Factor (25 GWd/MT)									
IT									
0.969	0.639								
1.012	1.030	1.022							
GT	1.048	1.038	GT						
0.740	1.020	1.043	1.069	0.769					
1.050	1.032	1.034	1.051	1.062	GT				
GT	1.061	0.773	GT	1.043	1.043	0.738			
1.025	1.027	1.048	1.026	1.009	1.013	1.016	1.000		
1.012	1.008	1.006	1.013	1.009	1.000	0.994	1.001	0.992	

BOC: Beginning of (fuel) cycle; MOC: Middle of (fuel) cycle; EOC: End of (fuel) cycle

Figure 3. Fuel Optimization Example

LCOE Study Model (1/4)

• Levelized Cost of Electricity (LCOE)

- Price of electricity where revenues equal costs
- Measure of economic efficiency
- Represents total costs of a power plant divided by the total energy produced

Assumptions

- Full Power during operation
 - No Peak Following
- Zero power during refueling
- Change in capital and O&M costs are marginal

 $LCOE = \frac{C_{cc} + C_{O\&M} + C_U}{P \cdot \eta \cdot T_{cvcle}}$

LCOE Study Model (2/4)

- LCOE is variable with capacity factor, fuel cost, and cycle time
- LCOE of higher enriched reactor may be estimated as function of the LCOE of the standard reactor design
- LCOF Levelized Cost of Fuel

$$LCOE = \frac{C_{cc} + C_{O\&M} + C_U}{P \cdot \eta \cdot T_{cycle}}$$

$$(\text{LCOE})_{E} = \left[(\text{LCOE})_{O} - (\text{LCOF})_{O} \right] \frac{\eta_{O}}{\eta_{E}} + (\text{LCOF})_{E}$$

$$LCOF = \frac{C_U}{P \cdot \eta \cdot T_{cycle}}$$

LCOE Study Model (3/4)

Cost of Fuel = Cost of Mining & Milling

- + Cost of conversion
- + Cost of Enrichment
- + Cost of Fuel Fabrication

Table 2. Fuel Prices Used for HALEU Economic Study

	Process	Cost	Unit	
Fuel Prices	Mining & Milling	68	\$/kgU3O8	
FUEL FILLES	Conversion	105	\$/kgU	
	Enrichment	52	\$/SWU	
	Fuel Fabrication	300	\$/kg	

Prices are approximate and as of March 2017 (World Nuclear Association)

LCOE Study Model (4/4)

- Cost of enrichment (\$/kg)
- Not necessary to know feed or waste mass
 - Cost of fuel has significant dependence on tails enrichment
- Higher enriched fuel increases mining demands
- Tails enrichment
 - (0.2-0.3 w/o)
- Natural uranium enrichment
 - (0.711 w/o)

$$c_{UE} = C_{SWU} \begin{bmatrix} \left(\frac{x_P - x_F}{x_F - x_W}\right) (2x_w - 1) \ln\left(\frac{x_w}{1 - x_w}\right) \\ + (2x_P - 1) \ln\left(\frac{x_P}{1 - x_P}\right) \\ - \left(\frac{x_P - x_W}{x_F - x_W}\right) (2x_F - 1) \ln\left(\frac{x_F}{1 - x_F}\right) \end{bmatrix}$$

$$\frac{M_F}{M_P} = \frac{x_P - x_W}{x_F - x_W}$$

Parameters Used for HALEU Economic Study

Table 3. Parameters Used for HALEU Economic Study

	Parameter	Value	Unit
	Thermal Power, P _{th}	160	MWt
	Electric Power, Pe	45	MWe
	Cycle Burnup, <i>B</i>	12	MWd/kgU
NuScale	Cycle Length, T _{cycle}	24	months
Economic	Capacity Factor, η ο	<mark>98.6</mark>	<mark>%</mark>
Parameters	Cycle Effective Full-Power Days, T _{EFPD}	720	days
	Fuel Loading Mass, M _P	9213	kg
	Average Fresh Load Enrichment, x _P	<mark>4.17</mark>	<mark>w/o</mark>
	Average Levelized Cost of Electricity, LCOE	<mark>86</mark>	<mark>\$/MWh</mark>
	Estimated Levelized Cost of Fuel, LCOF	<mark>16.5-17.5</mark>	<mark>\$/MWh</mark>

Results (1/4)

Table 4. Total Core Load Uranium Cost (Million USD)

	Product Enrichment {w/o}								NuScale Enr.		
		5.0	7.0	9.0	11.0	13.0	15.0	17.0	19.0	20.0	4.17
	0.20	<mark>15.2</mark>	<mark>20.8</mark>	<mark>26.5</mark>	<mark>32.3</mark>	<mark>38.0</mark>	<mark>43.8</mark>	<mark>49.6</mark>	<mark>55.4</mark>	<mark>58.3</mark>	<mark>12.8</mark>
	0.22	15.3	21.0	26.7	32.5	38.3	44.2	50.0	55.8	58.8	12.9
Tails	0.24	15.4	21.2	27.0	32.9	38.8	44.7	50.6	56.5	59.4	13.0
{w/o}	0.26	15.6	21.5	27.4	33.4	39.3	45.3	51.3	57.3	60.3	13.2
	0.28	15.8	21.8	27.9	33.9	40.0	46.1	52.2	58.3	61.4	13.4
	0.30	16.1	22.3	28.4	34.6	40.8	47.1	53.3	59.6	62.7	13.6

Figure 4. Projected LCOE of target enrichments and cycle lengths

Results (3/4)

Figure 2. Optimized Enrichments and LCOE Reduction for SMR with Extended Cycle Length.

Results (4/4)

Table 5. Savings of NuScale Reactor and Plant From Increasing Core Burnup

TIME {YR}	CORE-AVG. ENR. {W/O}	LCOE	LCOE REDUCTION {\$/MWH}	REACTOR SAVINGS (\$/YR)	12-MODULE PLANT SAVINGS (\$/YR)
2	4.17	86	0	0	0
2.5	5.21	85.5	0.520	205,000	2,460,000
3	6.26	85.2	0.850	335,000	4,020,000
3.5	7.30	84.9	1.073	423,000	5,080,000
4	<mark>8.34</mark>	84.8	1.233	486,000	<mark>5,840,000</mark>

References

- 1. C. CHARLES, "Micro-Reactors Could Power Remote Military Bases within a Decade," retrieved from NEI website on July 06, 2020.
- 2. F. PIMENTEL, "The Economic Benefits and Challenges with Utilizing Increased Enrichment and Fuel Burnup for Light-Water Reactors," retrieved from NEI website on May 21, 2020.
- 3. C. P. PANNIER and R. ŠKODA, "Small Modular Reactor and Large Nuclear Reactor Fuel Cost Comparison," *Innovative Nuclear Power Plant Design and New Technology Application*, **5** (2014)
- 4. U.S. NRC, "NuScale Plant Design Overview," retrieved from NRC website on June 4, 2020.
- 5. WORLD NUCLEAR ASSOCIATION, "Economics of Nuclear Power," retrieved from WNA website on June 04, 2020.
- 6. NUSCALE POWER, Upgrading America's Energy System, NuScale website on June 30, 2020.
- G. PARKS, "A piecewise linear reactivity fuel-cycle model," Annals of Nuclear Energy, 16(8), 417-422 (1989).

Acknowledgements

- Virginia Commonwealth University
 - Brendan Fisher
 - Michael Cartwright
 - Caleb Taylor
 - James Miller

