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1. Introduction

Sensitivity analysis investigates the variation of the system
responses to the changes of the system parameters. The sensitivity
of k-eigenvalue with respect to nuclear data (i.e., nuclear cross sec-
tions) has been of interest to researchers in nuclear reactor physics
community for decades. Many methods in this regard have been
developed (McClarren, 2018; Stacey, 2007; Cacuci, 2003; Saltelli,
2004; Williams, 1986; Gandini, 1967). These sensitivity methods
can be simply summarized into two categories. One is the
forward-based sensitivity method, which approximates the sensi-
tivity into a finite difference formulation and has limited order of
accuracy (McClarren, 2018; Stacey, 2007; Cacuci, 2003). Partly
due to this reason, the forward-based sensitivity calculation
approaches typically restrict the permissible perturbation range
of the sensitivity parameter, and thereby are subject to significant
variability between responses of interest and selected parameters.
Another sensitivity method is the adjoint-based sensitivity
method, which generally utilizes the adjoint solution to form the
sensitivity based on the first order perturbation theory (Cacuci,
2003; Saltelli, 2004; Williams, 1986; Gandini, 1967). The adjoint-
based sensitivity method can offer accurate solutions for sensitiv-
ities, but it possesses a completely different computational para-
digm as the forward-based method and requires additional
calculations of the adjoint solution that is response dependent.

The paper presents a different method to obtain accurate sensi-
tivities of the k-eigenvalue in neutron transport problems based on
the complex variable Taylor series expansion. The complex vari-
able method for the computation of sensitivity derivatives was pio-
neered by Newman in aerodynamic, structural, and aero-structural
analyses (Newman et al., 1998), and later revisited in the literature
by numerous researchers in many other fields (De Pauw and
Vanrolleghem, 2006). For clarification, the term sensitivity deriva-
tive used herein through the paper means the derivative needed to
represent the sensitivity information. In the current work, the
complex variable method is applied to the k-eigenvlaue neutron
transport model to calculate the k-eigenvalue sensitivities with
respect to nuclear cross sections. The feasibility and accuracy of
the complex variable method for calculation of k-eigenvalue sensi-
tivities are justified by comparing the results to the forward-based
finite difference approximations as well as reference solutions
from an existing sensitivity analysis tool developed by the
adjoint-based sensitivity method.

This paper first paves the way to numerically solve the complex
variable neutron transport equation. The traditional neutron trans-
port solver must be extended to handle the complex inputs and
outputs in order to enable the complex variable based sensitivity
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calculations in neutron transport problems. The standard compu-
tational methods for neutron transport problems employed a
sophisticated nested iteration paradigm to solve the neutron trans-
port equation (which is the primary mathematical model for
nuclear reactor calculation) because of the inherent complexity
of the equation (Lewis and Miller, 1984). It is likely owing to this
sophisticated iteration procedure, existing neutron transport sol-
vers cannot generate correct complex solutions if they are blindly
loaded with complex inputs. To overcome this difficulty and to
obtain correct complex answers for sensitivity calculations, math-
ematical derivations and computational treatments have been
exercised in this paper to make the transport solver capable of han-
dling the complex variable conditions. With the complex solutions
of the transport problems available, the way to calculate the sensi-
tivity of k-eigenvalue is articulated afterwards.

In the current work, a Matlab code was developed to solve the
one-dimensional multigroup discrete ordinates k-eigenvalue
transport equation with complex variable arguments. The code
was then adopted to compute the k-eigenvalue sensitivities with
respect to nuclear cross section by the complex variable bases sen-
sitivity method. Numerical examples with respective one energy
group and multigroup conditions were tested with the developed
code to confirm the successful implementation of the complex
variable method as well as the feasibility of the proposed method
for sensitivity calculations. A preliminary version of this paper has
been previously presented in the recent American Nuclear Society
(ANS) Mathematics and Computation (M&C) topical conference
(Wu et al., 2019). However, substantial extensions have been exer-
cised since then. In particular, the method has been extended to
the multigroup case with more numerical examples and results
included in this paper.

The rest of the paper is organized as follows: A generic back-
ground introduction of sensitivity analysis and complex variable
method is outlined in Section 2, followed by Section 3 with a
detailed description of mathematical derivations and numerical
implementations of the complex variable method to the k-
eigenvalue neutron transport models. The one-dimensional multi-
group discrete-ordinates transport code was developed based
materials in Section 3. Computational examples encompassing
one-group and multigroup transport case problems are respec-
tively demonstrated in Section 4, with numerical results presented
and discussed to verify the feasibility and accuracy of the complex
variable method. Conclusions and future research efforts related to
the current work are provided at the end of the paper.

2. Sensitivity analysis and complex-step derivative method

2.1. Sensitivity analysis

In general, any function of interest may be expressed in a func-
tional form as f ðx;QðxÞÞ. Here the function is assumed to have
explicit as well as implicit dependencies on the system parameter
x. For the implicit dependency, the functional form of Q(x) typically
is not known and usually represents the solution to a disciplinary
state equation. Hence, Q is often referred to as the state vector. In
reactor calculations, for example, the effective multiplication factor
(i.e., the k-eigenvalue) can be taken as the general function f, the
nuclear data (i.e., cross sections) are the parameter x , and the neu-
tron flux is akin to the implicit state vector Q(x).

The sensitivity derivatives of the general function may be
obtained by a direct differentiation to the implicit and explicit
dependencies as

df
dx

¼ @f
@x

þ @f
@Q

� �T
@Q
@x

ð1Þ
2

The approach to sensitivity analysis based on Eq. (1) is normally
referred to as the forward-based sensitivity analysis method. As
can be seen from the equation, the forward-based sensitive analy-
sis method needs to calculate the sensitivities of the state vector,
namely @Q=@x, in order to compute the sensitivity derivatives of
the general function.

Depending on the number of functions of interest that is desired
and the number of parameters or independent variables in which
sensitivity information is required, a more efficient alternative
approach can be formulated. This method is usually referred to
as the adjoint-based sensitivity analysis method (McClarren,
2018; Stacey, 2007), and may be written as

df
dx

¼ @f
@x

� kTf
@R
@x

� �
ð2Þ

where kf is the adjoint vector defined in such a way as to eliminate
the dependence of the functions on the sensitivity of the state vec-
tor, R represents the disciplinary state equation that will be dis-
cussed below,

In the forward-based sensitivity method, the sensitivity of the
state vector @Q=@x is required, and for the adjoint-based sensitivity
method, the adjoint vector kf is needed. To obtain these required
vectors, the state equation can be generally defined as a residual
vector R symbolically written as

Rðx;QðxÞÞ ¼ 0 ð3Þ
where the explicit and implicit dependencies of the residual on the
state vector Q and the system parameter x are asserted. In the
forward-based sensitivity method, Eq.(3) is directly differentiated
with respect to the independent variables (i.e., the parameter x)
to produce the following linear equation

dR
dx

¼ @R
@x

þ @R
@Q

@Q
@x

¼ 0 ð4Þ

or rearranged as

@R
@Q

@Q
@x

¼ � @R
@x

ð5Þ

where @R=@Q is the Jacobian matrix evaluated with the state vector
given the current value of the parameters of interest. The required
sensitivity of state vector @Q=@x can thus be calculated from Eq. (5).

In the adjoint-based sensitivity method, a little bit more manip-
ulation is needed to obtain the required adjoint vectors kf ,which is
response dependent. Combining Eq. (4) from the direct differenti-
ation method with the sensitivity derivatives in Eq. (1), the adjoint
vector kf may be conveniently defined such that the sensitivity of
the state vector @Q=@x is no longer needed. Nevertheless, the end
result requires the solution of the following linear system for the
adjoint vector

@R
@Q

� �T

kf ¼ @f
@Q

� �T

ð6Þ

Eq. (6) is known as the adjoint equation to the state equation Eq.
(3), and the source term in the right side of the equation contains
the response information. This is the reason that the adjoint-based
sensitivity method is known to be response dependent. In Section 4,
the results of complex variable method for the second example
were compared to adjoint-based sensitivity solutions obtained
from an existing sensitivity analysis tool to verify the accuracy of
the complex variable method. It should be pointed out here that
the complex variable method introduced in this paper is essentially
a forward-based sensitivity approach, therefore a thorough discus-
sion of the complex variable method over the adjoint-based sensi-
tivity approach will not be offered in the current paper, but rather
be deferred in our future research endeavors.
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2.2. Complex-step derivative method

As can be seen from the discussion above, the main computa-
tion effort required in the forward-based sensitivity calculation
are the estimations of the derivatives of the response to the param-
eters of sensitivity analysis interest. For illustration, we assume
f ðxÞ is a general response function of the investigator’s interest
with a single input parameter x. Calculating the sensitivity of
f ðxÞwith respect to a variable x is essentially to compute the
derivative of f ðxÞ at a certain nominal value of x. This task may
appear to be simple at the first glance. However, for a realistic engi-
neering problem, the task of constructing the derivative using
either the forward-based or the adjoint-based sensitivity method,
and then building the software for evaluating these terms can be
tedious.

One solution to this problem has been found in the use of a
technique known as automatic differentiation (AD), which deter-
mines the derivative of a response to a parameter by applying
the chain rules of derivatives at each step in the source code that
produces the numerical results (McClarren, 2018). Using AD
method, a FOTRAN language based pre-compiler software tool,
called ADIFOR (Bischof et al., 1992), has been developed and uti-
lized with much success to obtain complicated derivatives from
advanced simulation and grid generation codes (Green et al.,
1996; Taylor et al., 1997). The AD approach requires differentiation
of the simulation software, either by hand or with a pre-compiler
software. Besides AD, all other methods to obtain sensitivity
derivatives are based on numerical techniques, which is the topic
focused in this paper. The simplest numerical technique in this
regard is the direct forward perturbation based forward finite dif-
ference method (FFDM), which is straightforward and well
accepted as outlined in Section 2.1. Another alternative forward
based numerical technique is a complex variable based approach
evaluating the derivatives of real functions with explicit and impli-
cit dependencies on the independent variable. This technique,
referred to herein as the complex-step derivative method (CDM),
has been given various names in the literature, such as the Com-
plex Taylor Series Expansion method among others (Newman
et al., 1998, 2003; Burg and Newman, 2003; Anderson et al.,
2001). The CDM was demonstrated via the computation of aerody-
namic, structural, and multidisciplinary sensitivity derivatives
with respect to independent variables appropriate for aerodynamic
and structural design optimizations (Newman et al., 2003; Burg
and Newman, 2003), as well as turbulent flow problems
(Anderson et al., 2001). Furthermore, CDM is commonly used for
linearization and Jacobian evaluation in implicit schemes that
involve complicated flux functions. As a testament to the ease of
implementation, and accuracy of the approach, this method has
been widely adopted and exploited by many researchers at various
universities and government laboratories. A complete list of refer-
ences is extensive and prohibitive to include within this paper. For
demonstration and comparison, the finite difference based direct
perturbation method and complex variable based step derivative
method noted above are further discussed below.

The finite difference approximation to the derivative with a
desired truncation error can be obtained using the Taylor series
expansion approach. For example, the derivative with the first
order approximation can be estimated with a FFDM scheme as
follows

df
dx

� f ðxþ DxÞ � f ðxÞ
Dx

� Dx
2

d2f
dx2

ð7Þ

which apparently shows the first order accuracy – it has a trunca-
tion error of OðDxÞ. To achieve the second order accurate approxi-
mation to the derivative, the forward and backward finite
3

difference approximations may be combined to have the central
finite difference method (CFDM) scheme to the derivative as follows

df
dx

� f ðxþ DxÞ � f ðx� DxÞ
2Dx

� Dx2

3!
d3f
dx3

ð8Þ

which indicates the derivative has a truncation error of OðDx2Þ, the
second order of accurate with respect to the parameter change.

Using the Taylor series expansion based finite difference
approximation to obtain sensitivity derivatives is advantageous
because it can be readily applied to any existing code with nearly
no modification to the code. On the other hand, the disadvantages
of the conventional FFDM method are well recognized. First, the
computational time required may become prohibitive when the
number of input parameters of interest become large. For the
FFDM with the first order accuracy, as shown in Eq. (7), N + 1 eval-
uations are needed for a problemwith N parameters. It is worthy of
noting the number of calculations estimated above does not
include the trial and error tests that are normally needed for choos-
ing the appropriate perturbation step size in these methods. Sec-
ond, the choice of step size always causes inaccuracies in the
FFDM type derivative. Because of this, a smaller step size is usually
desired in FFDM schemes. However, significant subtractive cancel-
lation errors will be produced and contaminate the difference of
the two evaluations if a tiny step size is used in the FFDM scheme.
Thus, additional computational efforts are mostly needed to iden-
tify an optimal step size in FFDM type sensitivity calculation.

The CDM scheme mentioned earlier can overcome the disad-
vantages inherently associated with conventional forward-based
sensitivity calculations. The CDM scheme also takes the advantages
of Taylor series expansion for the evaluation of derivatives. How-
ever, rather than expanding the function in the real variable
domain as that of the conventional FFDM, the CDM expands the
function of interest in a Taylor series formulation in the complex
variable domain as follows

f xþ iDxð Þ ¼ f xð Þ þ Dx i
df
dx

� Dx2

2!
d2f
dx2

� Dx3 i
3!

d3f
dx3

þ Dx4

4!
d4f
dx4

þ � � �
ð9Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
, and the imaginary component of the complex vari-

able is purposely set as the perturbation step size. Focusing on the
imaginary part of Eq. (9) and solving for the first derivative from the
equation, we get

df
dx

� Im f xþ iDxð Þ½ �
Dx

þ Dx2

3!
d3f
dx3

ð10Þ

where the terms with higher order errors are omitted. Eq. (10)
essentially defines the CDM scheme to evaluate the first order
derivative of the function with respect to the parameter x. As can
be clearly seen in Eq. (10), the CDM estimation of the derivative
has a truncation error of OðDx2Þ, and the CDM scheme has no sub-
tractive terms as those in FFDM or CFDM, thus the cancellation
errors are precluded. Because of this feature, CDM is not sensitive
to step size selection and only requires step size to avoid excessive
truncation error, which is advantageous to the conventional finite
difference schemes.

Many additional numerical advantages can be realized by CDM.
First, CDM falls into the category of the forward-based sensitiviy
analysis for the derivative evaluations, therefore it may require
very minor modification when applying the method to an existing
software. Many salient features and capabilities of the original
software can be retained, which is way superior to hand differen-
tiation or AD based sensitivity analysis approaches. Second, CDM
is equivalent to the hand differentiation or AD approaches in the
regard of state vector or state equation, in which the state vector
and its derivatives are being solved for simultaneously. With this
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feature, the fully converged evaluations of the state equation,
which is generally required by the conventional FFDM schemes,
are avoided in order to obtain the sufficient accuracy of derivatives
for analysis. Third, CDM is a numerical scheme that is ideally suited
for parallel computing because each complex perturbation is inde-
pendent. This feature becomes paramount important when the
method is applied to practical engineering problems with large size
of input parameters of interest. Last, it is worthy of mentioning the
CDM is not a new method and has been invented for a long time.
The CDM is originated from the ideas of Lyness and Moler
(Newman et al., 1998; Lyness and Moler, 1967), who explored
these methods to demonstrate the use of complex-variables to
extract derivatives from simple explicit functions over five decades
ago, and many work has previously shown that CDM indeed
demonstrates true second order accuracy (Newman et al., 1998,
2003; Burg and Newman, 2003; Anderson et al., 2001).

Furthermore, the CDM technique [see Eq. (9)] can be readily
extended to calculate the second- order derivatives using available
data with nearly no additional computational cost as follows:

d2f
dx2

¼ 2 f xð Þ � Re f xþ Dx ið Þ½ �f g
Dx2

þ O Dx2
� � ð11Þ

which apparently has the second order truncation error as the
CDM-based first order derivative. However, as indicated by Eq.
(11), the approximation to the second-order derivative is still sub-
ject to subtractive cancellation, thus the perturbed step size must
be chosen with cautious for the second-order derivative calcula-
tions. The features of the second-order derivative evaluations using
CDM in the application of reactor problems will not be pursued in
this paper but will be explored in our future endeavors.

The aforementioned salient features of the CDM in estimating
first order derivatives than the forward-based finite difference
methods can be demonstrated with a simple analytic example as
follows. The partial derivatives of the two variable function
f ðx; yÞ ¼ 3x3 þ 4x5y3 at a certain point can be analytically evaluated
with no errors. The partials can also be numerically generated by
FFDM and CDM, respectively. Fig. 1 illustrates the partial results
(@f=@x and @f=@y) at the point (x = 3, y = 1.5) generated by these
methods. As a reference solution, the exact partial derivatives at
the point are also shown in the figure.

As shown in Fig. 1, when the perturbed step size becomes large,
the results yielded from the FFDM deviate from the exact solution
when the perturbation, whereas results from the CDM agree well
with the exact solution. This phenomena indicates the truncation
Fig. 1. The partial derivatives of f ðx; y

4

error associated with the FFDM dominates when the step size
becomes large, but it does not affect the CDM results because those
two methods have the second order of accuracy with respect to the
perturbed parameters. On the other hand, when the perturbed step
size becomes small, the FFDM result deviates because the subtrac-
tive cancellation errors pollute the derivative approximation. In
contrast, the CDM results are not subjected to subtractive cancella-
tions errors.

It should be noted that this simple analytic example is based on
a benign two variable explicit function. As such, the perturbation
range over which the finite difference method also gives acceptable
results for both variables is substantial. This case is not a typical
one, particularly when implicit dependencies that require the iter-
ative solution to nonlinear state equations are required for the
function evaluations. In those cases, there may only exist a very
small perturbation range for finite difference method to produce
an acceptable derivative approximation, and this range could be
different for each function of interest and parameter combination.
On the other hand, the CDMmethod, as described above and found
in the cited literature, has been demonstrated not to suffer from
these drawbacks and is step size independent, regardless of func-
tion or parameter selection.

3. Application to k-Eigenvalue transport problems

This section outlines the mathematical derivations needed for
applying the CDM to the k-eigenvalue neutron transport problems.
It also provides some numerical implementation details of the
method to generate the k-eigenvalue sensitives. For illustration,
the derivation starts with a simple one energy group formulation
of the transport equation, and then extends it to the multiple
energy group case. The focus of the derivation is given to the k-
eigenvalue mode transport equation as the primary objective of
the current work is to use CDM to calculate the sensitivity of k-
eigenvalue with respect to nuclear data (i.e., cross sections).

3.1. One-group case

With standard notations, the one-group one-dimensional (1-D)
k-eigenvalue neutron transport problem with the isotropic scatter-
ing source and uniform materials may be described by the follow-
ing equation

l @wðx;lÞ
@x

þ Rtwðx;lÞ ¼ 1
2
Rs/ðxÞ þ 1

2
mRf/ðxÞ

k
ð12Þ
Þ ¼ 3x3 þ 4x5y3 at x = 3, y = 1.5.
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Defining the fission source

Sf ðxÞ ¼ mRf/ðxÞ ð13Þ
Eq. (12) is reduced to

l @wðx;lÞ
@x

þ Rtwðx;lÞ ¼ 1
2
Rs/ðxÞ þ 1

2
Sf ðxÞ
k

ð14Þ

In the FFDM-based sensitivity calculation, the transport forward
model [Eq. (14)] is first used to compute the reference k-eigenvalue,
denoted as k0 thereafter. Then the sensitivity parameter of interest,
the fission cross section for example, is perturbed with a small
scale such as R0

f ¼ Rf ð1þ hÞ, where h is the relative value of the
perturbation or viewed as a scaling factor of the perturbation,

namely h ¼ R0
f � Rf

	 

=Rf .

The perturbed k-eigenvalue, denoted as k0 thereafter, can be
computed by running the transport forward model one more time
with the perturbed cross section. The FFDM-based k-eigenvalue
sensitivity coefficient is then approximated as follows

Rf

k0

@k
@Rf

� �
FDM

¼ Rf

k0

k0 � k0
R0

f � Rf
¼ k0 � k0

k0 � h ð15Þ

To enable the CDM-based sensitivity calculation for k-
eigenvalue using the transport model, the transport equation
needs to be re-casted by considering the following quantities con-
sisting of both real (subscript r) and imaginary (subscript i) compo-
nents of the solution space:

w ¼ wr þ wii
/ ¼ /r þ /ii

Rt ¼ Rt;r þ Rt;ii

Rs ¼ Rs;r þ Rs;ii

mRf ¼ mRf ;r þ mRf ;ii

k ¼ kr þ kii

Sf ¼ Sf ;r þ Sf ;ii

ð16Þ

It is worthy of noting here that since only the imaginary compo-
nent of the perturbed parameter will later be used in the calcula-
tion of the CDM-based derivatives, as indicated in Eqs. (9) and
(10), in the practice of CDM, the imaginary component of the per-
turbed parameter will be purposely defined as a fraction of the real
component to ease the calculation. This practical trick will be more
clearly demonstrated in Eq. (23) later.

Substituting Eq. (16) into Eq. (14) yields the complex variable
transport equation as

l @

@x
wr þ wiið Þ þ Rt;r þ Rt;ii

� �
wr þ wiið Þ

¼ 1
2

Rs;r þ Rs;ii
� �

/r þ /iið Þ þ 1
2
Sf ;r þ Sf ;ii
kr þ kii

ð17Þ

Following a similar definition as Eq. (13), the fission source now
can be expressed as

Sf ¼ mRf ;r þ mRf ;ii
� �

/r þ /iið Þ
¼ mRf ;r/r � mRf ;i/i

� �þ mRf ;r/i þ mRf ;i/r

� �
i ð18Þ

Thus we get

Sf ;r ¼ mRf ;r/r � mRf ;i/i ð19aÞ

Sf ;i ¼ mRf ;r/i þ mRf ;i/r ð19bÞ
The last term on the right hand side of Eq. (17) can be further

arranged as follows
5

Sf ;rþSf ;i i
krþkii

¼ 1
k2r þk2i

kr � kiið Þ Sf ;r þ Sf ;ii
� �

¼ 1
k2r þk2i

krSf ;r � kiSf ;riþ krSf ;iiþ kiSf ;i
� �

¼ 1
k2r þk2i

krSf ;r þ kiSf ;i
� �þ 1

k2r þk2i
krSf ;i � kiSf ;r
� �

i

ð20Þ

By equating the real and imaginary components on both sides
of Eq. (17), we obtain the following two coupled transport equa-
tions for real and imaginary flux solution wr ; wi, respectively

l @wr

@x
þ Rt;rwr � Rt;iwi ¼

1
2

Rs;r/r � Rs;i/i

� �þ Qf ;r

2
ð21aÞ

l @wi

@x
þ Rt;rwi þ Rt;iwr ¼

1
2

Rs;r/i þ Rs;i/r

� �þ Qf ;i

2
ð21bÞ

where

Qf ;r ¼
1

k2r þ k2i
krSf ;r þ kiSf ;i
� � ð22aÞ

Qf ;i ¼
1

k2r þ k2i
krSf ;i � kiSf ;r
� � ð22bÞ

With the calculation of the imaginary component of the k-
eigenvalue (i.e., ki), the CDM-based k-eigenvalue sensitivity coeffi-
cient can be estimated as follows (use fission cross section as an
example sensitivity parameter)

Rf

k0

@k
@Rf

� �
CDM

¼ Rf

k0

ki
Rf ;i

¼ Rf

k0

ki
Rf � h ¼ ki

k0 � h ð23Þ

where Rf ;i ¼ Rf h is the user defined imaginary component of the
perturbed fission cross section for the complex solution calculation,
and thus here we have h ¼ Rf ;i=Rf . Note the definition of h in Eq.
(23) is different from the one shown in Eq. (15).

As indicated in Eq. (23), the CDM-based sensitivity calculation
requires to know the reference as well as the imaginary compo-
nent of the k-eigenvalue solution. Since the imaginary solution
essentially requires to perform forward transport calculation
twice to resolve the flux coupling mechanism indicated in Eq.
(21), the total computational cost for CDM is really 2 N + 1 for-
ward transport calculations for the case of N parameters, which
is actually the same as the CFDM described in Section 2.2. How-
ever, if only the derivative information (rather than the sensitiv-
ity coefficient) is needed, the forward transport calculation for
the reference solution can be skipped in the CDM procedure
because the reference solution may not need for the derivative
calculation as indicated in Eq. (10) and Eq. (23). Similar situation
is encountered in the CFDM approach. In this regard, the CDM
requires exactly the same computational burden as the CFDM,
however other benefits such as accurate second-order derivative
calculations can be achieved in CDM without additional compu-
tational cost, which will be demonstrated with our future
research endeavors.

3.2. Multigroup case

Most of the derivations for the one-group case described in Sec-
tion 3.1 can be straightforwardly extended to apply the CDM to a
multigroup (MG) case, However, some additional care needs to
paid to the in-between energy group in-scattering source term
appeared in the MG formulation of the transport equation.

With standard notations, the k-eigenvalue mode MG transport
equation for the 1-D slab geometry considering only isotropic scat-
tering considered may be given as
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l @wg ðxÞ
@x þ RtgðxÞwgðxÞ ¼ 1

2Rs;g!gðxÞ/gðxÞ þ 1
2

PG
g0 ¼ 1
g0–g

Rs;g0!gðxÞ/g0ðxÞ

þ 1
k
vg
2

PG
g0¼1

mRfg0ðxÞ/g0ðxÞ

ð24Þ
where the subscript g stands for the group number, vg is fission
spectrum in the energy group g.

Compared to the one-group formulation in Eq. (12), the stream-

ing term l @wg ðxÞ
@x , total collision term RtgðxÞwgðxÞ, within-group in-

scattering term 1
2Rs;g!gðxÞ/gðxÞ, and fission term

vg
2

PG
g0¼1mRfg0 ðxÞ/g0 ðxÞ remain no significant changes except they

are all tagged with a specific group number, besides the fission
term is constructed with a summation sign that accounts for fis-
sion contributions from all energy groups, therefore these terms
can be naturally extended to the complex variable version follow-
ing the derivation procedure for the one-group equation outlined
in Section 3.1.

For the in-between group in-scattering source term

1
2

PG
g0 ¼ 1
g0–g

Rs;g0!gðxÞ/g0ðxÞ, however, some special treatments have to

be executed to properly account for the scattering contributions
from both real and imaginary flux. Denote the in-scattering source
for group g from the other group g’ as

Scatg ¼ Rs;g0!gðxÞ/g0 ðxÞ ð25Þ
In the case of the complex variable, this source will be expanded

as

Scatg ¼ Rr
s;g0!g þ Ri

s;g0!gi
	 


/g0 ;r þ /g0 ;ii
� � ¼ Scatg;r þ Scatg;ii ð26Þ

where

Scatg;r ¼ Rr
s;g0!g/g0 ;r � Ri

s;g0!g/g0 ;i ð27aÞ

Scatg;i ¼ Ri
s;g0!g/g0 ;r þ Rr

s;g0!g/g0 ;i ð27bÞ
With these considerations, the original MG equation [Eq. (24)]

can be casted into the following two coupled MG transport equa-
tions for the real portion and imaginary flux, respectively

l
@wg;r

@x
þ Rtg;rwg;r � Rtg;iwg;i ¼

1
2

Rr
g!g;s/g;r � Ri

g!g;s/g;i

	 


þ 1
2
Qg;s;r þ

vg

2
Qf ;r ð28aÞ

l
@wg;i

@x
þ Rtg;rwg;i þ Rtg;iwg;r ¼

1
2

Rr
g!g;s/g;i þ Ri

g!g;s/g;r

	 


þ 1
2
Qg;s;i þ

vg

2
Qf ;i ð28bÞ

where the in-between group in-scattering sources are defined as
follows

Qg;s;r ¼
XG
g0 ¼ 1
g0–g

Rr
s;g0!g/g0 ;r � Ri

s;g0!g/g0 ;i

	 

ð29aÞ

Qg;s;i ¼
XG
g0 ¼ 1
g0–g

Ri
s;g0!g/g0 ;r þ Rr

s;g0!g/g0 ;i

	 

ð29bÞ

and the sources Qf ;r , Qf ;i appeared in the fission terms are defined
exactly identical as those in Eq. (22), but the fission sources Sf ;r ,
Sf ;i included in the definitions will bear some differences from those
6

in Eq. (19) because here they need to account for all energy group
contributions in the MG case. The new formulations for Sf ;r and
Sf ;i are

Sf ;r ¼
XG
g0¼1

mRfg0 ;r/g0 ;r � mRfg0 ;i/g0 ;i
� � ð30aÞ

Sf ;i ¼
XG
g0¼1

mRfg0 ;r/g0 ;i þ mRfg0 ;i/g0 ;r
� � ð30bÞ
3.3. More details in numerical implementation

A couple of numerical implementation details are worthy to be
offered when applying standard computational neutron transport
methods (Lewis and Miller, 1984) to solve the coupled transport
equations yielded from the complex variable transport model
shown in Eq. (21). The first one is pertaining to the source iteration
technique in the flux solver. After the discretization of these two
coupled equations, the real and imaginary component of the flux
can be solved simultaneously by an direct inversion of a local
matrix within the source iteration framework, which will save
some computational cost. Another caveat for the CDM implemen-
tation is on the k-eigenvalue update scheme in the power iteration
framework. The fission contributions from both the real and imag-
inary flux component need to be taken into account when updating
the complex k-eigenvalue for the next iteration.

Following the standard source iteration framework with the dis-
crete ordinatesmethod to handle the angular variable, Eq. (21) may
be re-written as (for simplicity, the subscript for the angular direc-
tion is omitted from the angular flux notation)

ldwr

dx
þ Rt;rwr � Rt;iwi ¼ Sr ð31aÞ

ldwi

dx
þ Rt;rwi þ Rt;iwr ¼ Si ð31bÞ

where Sr ¼ 1
2 Rs;r/r � Rs;i/i

� �þ Qf ;rand Si ¼ 1
2 Rs;r/i þ Rs;i/r

� �þ
Qf ;ican be considered as known sources in a given source iteration
step. Note that many spatial discretization methods (Lewis and
Miller, 1984) can be applied to solve Eq. (31) numerically. Herein
the classic diamond difference (DD) method is used for illustration.

With a standard discretized mesh setting in 1-D slab geometry,
Eq. (31) can be expressed in a spatial discretized form as follows

l
wr;jþ1=2 � wr;j�1=2

Dxj
þ Rt;r;jwr;j � Rt;i;jwi;j ¼ Sr;j ð32aÞ

l
wi;jþ1=2 � wi;j�1=2

Dxj
þ Rt;r;jwi;j þ Rt;i;jwr;j ¼ Si;j ð32bÞ

where the subscript j denotes the mesh number, wj�1=2 are mesh-
edge flux, and wj is mesh-center flux. Without loss of generality,
only the transport scheme for the l > 0 case is shown here.

The DD method states

wr;jþ1=2 ¼ 2wr;j � wr;j�1=2 ð33aÞ

wi;jþ1=2 ¼ 2wi;j � wi;j�1=2 ð33bÞ
Substituting Eq. (33) into Eq. (32) yields

2l
Dxj

þ Rt;r;j

� �
wr;j � Rt;i;jwi;j ¼ Sr;j þ 2l

Dxj
wr;j�1=2 ð34aÞ

Rt;i;jwr;j þ
2l
Dxj

þ Rt;r;j

� �
wi;j ¼ Si;j þ 2l

Dxj
wi;j�1=2 ð34bÞ
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During the transport sweep, the incoming angular fluxes (i.e.,
wr;j�1=2 and wi;j�1=2) are known, thus Eqs. (34a) and (34b) can work
conjunctionally to solve for the real and imaginary portion of the
angular flux (i.e., wr;jand wi;j) simultaneously. A direct two by two
matrix inversion technique can be used here to solve for the
unknowns.

Standard power iteration algorithm can be applied to solve for
the k-eigenvalue of the complex variable transport equation, how-
ever, the eigenvalue updating scheme inside each iteration should
be revised to take into account of the fission contributions from
both the real and the imaginary flux components. Denoting n as
the current power iteration number, the complex k-eigenvalue
for the next iteration can be updated as (after the flux for the next
iteration was calculated):

kðnþ1Þ ¼
kðnÞ mRf ;r þ mRf ;ii

� �
/ðnþ1Þ

r þ /ðnþ1Þ
i i

	 


mRf ;r þ mRf ;ii
� �

/ðnÞ
r þ /ðnÞ

i i
	 
 ð35Þ

where kðnÞis the k-eigenvalue in the current iteration. For simplicity,
Eq. (35) is expressed based on the one-group case only.

4. Numerical experiments

Based on the mathematics derivations and numerical schemes
outlined in Section 3, A Matlab code was developed to solve the
one-dimensional multigroup discrete ordinates k-eigenvalue neu-
tron transport equation with complex variable arguments. The
code was then employed to demonstrate the capability of calculat-
ing k-eigenvalue sensitivities with respect to nuclear cross section
using the CDM. Two numerical experiments, focusing on one-
group and multigroup cases respectively, were conducted in this
section to verify the success implementation of the CDM and con-
firm the accuracy of CDM in calculating the k-eigenvalue
sensitivities.

4.1. One-group example

For a demonstration of the CDM application to the one-group
case, a three-region 1-D slab geometry reactor is used as the test
example. The thickness of Region 1 through Region 3 are 4 cm,
8 cm, and 4 cm, respectively. Vacuum boundary is imposed on
the left side of the slab and reflective boundary on the right. In
the current CDM practice, the boundary conditions for the imagi-
nary flux are assumed to be identical to those for the real flux.
Table 1 summarized the geometric and material properties of the
one-group k-eigenvalue problem.

The one-group 1-D slab geometry transport equation was
numerically solved using the standard discrete-ordinates method
(i.e., SN) for angular discretization and standard DD method for
the spatial discretization. For this oversimplified example, no neg-
ative flux is observed, and thus no zero flux fixed approach is
applied in the code. In order to sufficiently reduce the numerical
truncation errors due to both angular and spatial discretizations
in the calculations, S8 Gauss-Legendre quadrature set was used
for the angular variable and a uniform small mesh size of
Dx ¼0.2 cm was used for the spatial variable. Source iteration
Table 1
Geometric and Material Properties of the One-group Test Problem.

Property Region 1 Region 2 Region 3

Size [cm] 4.00 8.00 4.00
Rt [cm�1] 0.20 0.75 0.30
Rs [cm�1] 0.15 0.01 0.20
mRf [cm

�1] 0.10 0.80 0.20
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method is performed to obtain the converged the flux and power
iteration method is operated for seek the converged k-
eigenvalue. Adequately tight iteration convergence criteria (1E�6
for the flux and 1E�16 for the k-eigenvalue) are used to minimize
the iteration errors. The calculated k-eigenvalue for the one-group
example problem is 1.38525.

Following the methodologies described in Section 3, the deriva-
tives of k-eigenvalue with respect to the material cross sections in
Region 2 for FFDM and CDM were calculated and compared in
Fig. 2. Note the cross sections are perturbed with different percent-
age amount from 10% to ~0.0003% for both methods. For the case of
total cross section perturbations, we treated the total cross section
as an independent parameter and kept all other cross sections
intact during the perturbations. As seen in Fig. 2, the k-
eigenvalue sensitivity derivatives exhibit a similar behavior pat-
tern as that shown in Fig. 1 for the simple analytic function case.
The advantageous features of the CDM are clearly verified by these
results. For the derivative either to the fission cross section or the
total cross section, the FFDM result can reach the correct solution
when the perturbation step size is less than 0.1%, whereas the
CDM result can go beyond the small perturbation limit remarkably,
the correct derivative can be produced even for the case with the
perturbation step size goes over 5%.
4.2. Multigroup example

For the MG case, the 1-D slab problem from Cho and Park’s
technical report (Cho and Park, 2003) was adopted as an example
to test the CDM-based sensitivity calculations. This problem is
composed of two regions (fuel region and reflector region) with
seven energy group cross sections for both materials. Each region
has a thickness of 10 cm. The cross section data of the materials
are given in Table 2 and the scattering matrices of fuel and reflector
are given in Tables 3 and 4, respectively. Please note there were a
couple of typos identified in the nuclear data provided in the Cho
and Park’s original report published in 2003. These typos are cor-
rected after email communications with the authors of the report.
The cross section data used in this paper are the corrected ones.

Reflective boundary was assumed on the left side of the slab
and vacuum boundary on the right side. The DD scheme is used
for spatial discretization and S8 Gauss-Legendre quadrature set is
used for angular discretization and a uniform small mesh size of
Dx ¼ 0.2 cm was used for the spatial variable. The iteration meth-
ods are used the same as the one-group case. The calculated refer-
ence k-eigenvalue for this MG problem is 0.975077, which agrees
well with the results provided in Reference Cho and Park (2003).

The accuracy of the sensitivity calculation from the CDM can be
showed with the results in Table 5, in which the group wise sensi-
tivity of the k-eigenvalue with respect to the total cross section in
the fuel region is presented. The perturbation size used to generate
results in Table 5 is 0.1% of the nominal values. The relative errors
of both FFDM and CDM results are calculated by comparing them
to reference solutions produced by the SENSMG tool (Favorite,
2018). SENSMG is developed based on the adjoint-based sensitivity
method and is capable of calculating first-order sensitivities of a
variety of responses of interest in reactor analysis, including neu-
tron reaction rates, reaction-rate ratios, leakage, k-eigenvalue,
and a-eigenvalue. SENSMG calculates sensitivities using the for-
ward and adjoint solutions obtained from the PARTISN multigroup
discrete-ordinates code (Alcouffe, et al., 2017). The adjoint-based
sensitivity solutions were used as reference solutions here because
they are generally considered not subject to the perturbation
errors (Cacuci, 2003). As can be seen in Table 5, the errors of the
sensitivities obtained from CDM are remarkably reduced compared
to those obtained from the FFDM. These results also verify the cor-



Fig. 2. The comparison of k-eigenvalue derivative with respect to the fission cross section (left) and total cross section (right) with the FFDM and CDM.

Table 2
Cross Sections for MG k-Eigenvalue Problem.

Group Fuel Reflector FissionSpectrum (vg)
Rtg mRfg Rtg mRfg

1 0.17017 0.011734 0.159206 0 0.58791
2 0.36439 0.0011843 0.41297 0 0.41176
3 0.52726 0.0090086 0.59031 0 3.3906E�4
4 0.56743 0.025498 0.58435 0 1.1761E�7
5 0.48526 0.024833 0.71800 0 0
6 0.77092 0.11372 1.25445 0 0
7 1.52150 0.28451 2.65038 0 0

Table 3
Scattering Matrix for Fuel Region.

Out-group
In-group Rg->1 Rg->2 Rg->3 Rg->4 Rg->5 Rg->6 Rg->7

1 0.093065 0.071854 3.0578E�4 1.5596E�6 2.2073E�8 0 0
2 0 0.30694 0.054988 2.5924E�4 1.9961E�5 3.0975E�6 4.3477E�7
3 0 0 0.40587 0.097299 7.2488E�3 1.1276E�3 2.1468E�4
4 0 0 0 0.29505 0.18417 0.027766 5.2886E�3
5 0 0 0 1.0227E�4 0.21492 0.22444 0.026147
6 0 0 0 0 1.6986E�3 0.45563 0.24442
7 0 0 0 0 0 0.065389 1.28590

Table 4
Scattering Matrix for Reflector Region.

Out-group
In-group Rg->1 Rg->2 Rg->3 Rg->4 Rg->5 Rg->6 Rg->7

1 4.4477E�2 0.1134 7.2347E�4 3.7499E�6 5.3184E�8 0 0
2 0 0.282334 0.12994 6.2340E�4 4.8002E�5 7.4486E�6 1.0455E�6
3 0 0 0.345256 0.22457 1.6999E�2 2.6443E�3 5.0344E�4
4 0 0 0 0.091028 0.41551 0.063732 1.2139E�2
5 0 0 0 7.1437E�5 0.139138 0.51182 6.1229E�2
6 0 0 0 0 2.2157E�3 0.699913 0.53732
7 0 0 0 0 0 0.13244 2.4807
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rect implementation of the complex variable transport solver for
the multigroup problem.

To better demonstrate the advantages of the CDM over the con-
ventional FFDM, Fig. 3 depicts the energy group dependent sensi-
tivity coefficients of the k-eigenvalue with respect to the total
cross section of the fuel with different level of cross section pertur-
bations in both FFDM and CDM: 0.5%, 1.0%, and 5.0% variations of
the nominal values.
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The advantages of the CDM sensitivity solutions can be better
explained with the results shown in Fig. 3. When the perturbation
scale is limited in a very small range like 0.5%, both FFDM and CDM
can both produce acceptable sensitivity solutions in a similar level
of accuracy, particularly for those groups who are not sensitivity to
the k-eigenvalue (in this case they are group 1, 4, and 5). However
for the cases with larger perturbation, and particularly for those
groups who have large sensitivities (in this example they are group



Table 5
Sensitivity Coefficients Produced by FFDM and CDM.

Group Rt,g Sensitivity Coefficient (Sk,t,g)

Reference1 FFDM Error (%) CDM Error (%)

1 0.17017 �0.935702 �0.934180 �0.1626 �0.935710 0.0009
2 0.36439 �4.492485 �4.469948 �0.5017 �4.492426 �0.0013
3 0.52726 �3.238603 �3.225948 �0.3907 �3.238595 �0.0002
4 0.56743 �1.375728 �1.373039 �0.1955 �1.375740 0.0009
5 0.48526 �1.045748 �1.043984 �0.1687 �1.045759 0.0010
6 0.77092 �2.048304 �2.042200 �0.2980 �2.048310 0.0003
7 1.52150 �5.168036 �5.126975 �0.7945 �5.167755 �0.0054

1 Reference solution was obtained from the adjoint-based sensitivity tool SENSMG (Favorite, 2018).

Fig. 3. Comparison of the Group-wise k-eigenvalue sensitivity coefficients to the
fuel total cross sections by FFDM and CDM.

Fig. 4. The errors existing in sensitivity coefficients evaluated by FFDM and CDM
with different levels of perturbations.
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2 and 7), the FFDM solution diverges rapidly from the correct
answers while CDM stays robustly with the right solutions in an
acceptable range. These features can be better demonstrated in
Fig. 4, in which the errors in the sensitivity coefficients estimated
with larger perturbations are explicitly presented. Here we used
the sensitivity solutions obtained with 0.1% perturbations in center
finite difference method as the reference solutions to estimate the
errors.
9

5. Conclusions and future work

In this paper, the complex variable version one-dimensional MG
SN k-eigenvalue neutron transport code was developed. This code
is utilized as the forward transport solver for the application of
CDM sensitivity analysis. The CDM utilizes the Taylor series expan-
sion in the complex plane whereby the imaginary component of
the complex solution space is used to represent the sensitivity
derivative information. The CDM is applied to k-eigenvalue neu-
tron transport models to calculate the k-eigenvalue sensitivities
with respect to the nuclear cross sections. The success implemen-
tation of the complex variable neutron transport model and the
feasibility of the CDM in calculating k-eigenvalue sensitivities in
transport problems are verified by one-group and multigroup case
problems. The accuracy of the CDM sensitivity results is confirmed
by comparing to the conventional FFDM solutions, as well as
adjoint-based sensitivity solutions provided by SENSMG
(Favorite, 2018). It is noteworthy to point out the research work
carried out in the paper are only preliminary, the CDM sensitivity
analysis in neutron transport and nuclear reactor applications
requires many further investigations.

The level of accuracy and computational cost of the CDM solu-
tion are merely compared to the FFDM performance in neutron
transport applications as demonstrated by the case problems in
the paper. Although being attempted to have a brief discussion,
the advantages of CDM over CFDM (i.e., the center finite difference
method) in terms of accuracy and computational efforts on sensi-
tivity analysis are not apparent at this moment, and thus further
justifications are needed in this regard. However, some unique fea-
tures exhibited by the CDMmethod, including its invulnerability to
the subtraction cancellation errors that are inherently associated
with conventional finite difference methods, make the CDM a
promising approach for sensitivity calculations. Moreover, the
CDM can calculate the second-order sensitivity derivatives with
nearly no additional computational cost. This feature is clearly
demonstrated by Eq. (11) as the real component of the response
function is readily available after the governing equation is solved
with complex variables. The CDM on second and higher order
derivative evaluations will be pursued in our future research.

With the current demonstration, it may seem that the CDM
does not have significant advantages over the adjoint-based sensi-
tivity method, which is more commonly used in nuclear commu-
nity. The primary benefit of the adjoint method in sensitivity
calculation is that it can generate sensitivities for a given response
for any number of parameters without additional forward trans-
port solutions. Forward-based methods like CDM have the number
of calculations scaled linearly with the number of parameters. This
is the benefit of the adjoint-based method that cannot be matched
by the CDM. However, on the other side of the story, the adjoint-
based method is notoriously difficult and expensive when applied
to time-dependent and nonlinear problems (e.g., neutronics calcu-
lations including temperature feedback). In addition, the adjoint-
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based method becomes cumbersome and computational ineffi-
cient for problems with a large number of responses of interest,
because the adjoint solution associated with each response is dif-
ferent and needs to be calculated individually by solving the corre-
sponding adjoint equation. In other words, the adjoint-based
method is a response specific method. The forward-based methods
like CDM presented in this paper can, however, be readily extended
to these cases and overcome the shortcomings emerged in the
adjoint-based method.

Many topics can be explored with respect to future efforts on
the CDM applications in k-eigenvalue sensitivity calculation. In
the current work, the CDM results are only compared to the
forward-based sensitivities (i.e., the finite difference formulation
under a direct perturbation). More comparisons can be further
made to verify the benefits that can be achieved by CDM over
the perturbation theory based adjoint sensitivities. In that regard,
the CDM itself can be formulated in an adjoint framework to com-
pete with conventional adjoint sensitivity analysis, as well as han-
dling nonlinear effects in the sensitivities. As far as more realistic
applications concerned, the current transport model can be readily
extended to multi-dimensional problems with anisotropic scatter-
ing conditions, as well as time-dependent problems. Moreover, the
advantages of the CDM in evaluating the second and even higher
order sensitivity derivatives can be pursued in the reactor physics
applications where higher order sensitivities are sometimes
desired.
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