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Abstract — Computational modeling and simulations are widely used for evaluation of the performance and 
safety features of innovative nuclear reactor designs. Multigroup-based deterministic neutronics codes are often 
employed in these reactor design calculations because they can provide fast predictions of the neutron flux 
distribution and other neutronics characteristic parameters. Nevertheless, providing accurate multigroup cross 
sections for deterministic codes is an onerous job, which makes establishing an exhaustive cross-section library 
computationally prohibitive. Partly because of these reasons, multigroup neutron cross sections are normally 
stored only at certainty state points in the data library of these deterministic codes, and linear interpolation 
methodology is commonly utilized to estimate the cross sections at unknown states. However, the applicability of 
linear interpolation is limited, and the precision of its results is moderate.

In this paper, we discuss a preliminary feasibility study that we performed on providing more precise 
multigroup cross sections for deterministic neutronics codes by using the linear regression methodology. 
Compared to the traditional linear interpolation method, the linear regression approach principally showed 
improved computational efficiency considering the use of more data in the cross-section library, and constructed 
hypothesis functions for the responses of interest with a higher order of accuracy. In this study, a case study on 
Lightbridge Corporation’s metallic fuel element was carried out to demonstrate the feasibility and advantages of 
linear regression in multigroup cross-section interpretation. A reference cross-section library was established 
through calculations conducted with the Monte Carlo neutronic code Serpent. Because of the preliminary nature of 
this feasibility study, only the macroscopic total cross section is considered. Linear interpolation and linear 
regression were both used to estimate cross sections at unknown states based on the data available in the library. 
By comparing the performance of both methodologies, we demonstrated that the linear regression methodology 
achieved wider applicability and better precision in cross-section interpretation. Moreover, the linear regression 
process was finished within 15 s using a single processor core, which indicated that the additional computational 
burden brought by the implementation of linear regression methodology in the task was acceptable.
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I. INTRODUCTION

Through the development of nuclear technology, a large 
number of designs for advanced and innovative nuclear 
reactors are being studied. Nowadays, computational 

modeling and simulation become an indispensable technique 
for evaluation of the performance and analysis of the safety 
features of these designs. Continuous-energy-mode Monte 
Carlo neutron transport codes are widely used for steady-state 
reactor analysis1–3 but are rarely employed for transient 
analysis because of the large amount of computational time 
required. On the other hand, multigroup-based deterministic *E-mail: zwu@vcu.edu
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codes are more suitable for transient calculations4,5 in nuclear 
reactor analysis. In the course of transient analysis, determi
nistic codes calculate the time-dependent neutron flux dis
tribution in the geometries of interest by using either 
multigroup neutron diffusion or transport equations. 
Therefore, the accuracy of the multigroup cross-section data 
required to solve these equations becomes vital to the success 
of these calculations.

These group cross sections can be established either 
with deterministic lattice physics codes using a discrete 
energy group structure, such as CASMO (Ref. 6) and 
WIMS (Ref. 7), or with Monte Carlo codes using contin
uous-neutron-energy structures, such as MCNP (Ref. 8) and 
Serpent.9 Between these two approaches, the former one 
(i.e., the lattice code approach) may be more commonly 
seen in current academia and industrial practices, particu
larly for light water reactor analysis.

Generating efficient and accurate multigroup cross sec
tions for deterministic codes can be an intimidating job in 
reactor analysis. In the lattice code approach, the difficulties 
of cross-section generation stem from manifold aspects, yet 
the most prominent challenge is due to energy and spatial 
self-shielding effects on the neutron flux.10 Energy self- 
shielding is primarily caused by neutron interactions with 
nuclei in the resonance energy range while spatial self- 
shielding is the result of material heterogeneity and geometric 
complexities in various reactor designs. The self-shielding 
effect poses significant challenges for the prediction of the 
flux shape because it essentially depresses the flux distribu
tion in phase space and increases the complexity of the flux 
characteristics. The complexity of the problem is amplified 
when the two self-shielding effects are coupled and inter
mixed among neighboring energies and locations. Such com
plexities are often found exaggerated in advanced reactor or 
small modular reactor concepts because these new reactor 
designs are usually constructed with highly exotic geometric 
and material configurations. Examples of such advanced 
designs include Lightbridge fuel with “clover” designs,11 

transformational challenge reactor (TCR) fuel with square 
fuel segments with round flow channels,12 and so on.

In addition to geometric issues, many advanced designs 
have energy spectra in epithermal and fast ranges, which 
further amplifies the complexity of the energy self-shielding 
effect due to a higher degree of anisotropic and inelastic 
resonance scattering in these reactors. In short, the difficulty 
of predicting accurate energy spectra of resonances in arbi
trary geometry makes the cross-section generation an extre
mely unwieldy and onerous task in reactor physics 
calculations with deterministic methodologies.

On the other hand, the Monte Carlo approach can 
provide the most accurate solution for cross-section 

generation because it works with continuous-energy cross 
sections and does not require the use of any local approx
imations to the flux. In principle, the Monte Carlo method 
can handle all the difficulties mentioned above. 
Furthermore, Monte Carlo methods can naturally address 
many additional important challenges in cross-section gen
eration, including resonance interference in unresolved 
resonance ranges in fast reactors, upscattering effects in 
resolved resonance ranges in thermal reactors, anisotropic 
scattering effects, etc. These challenges may not be directly 
related to self-shielding effects but are also very difficult to 
be handled with a deterministic lattice code approach.

The Monte Carlo approach has been recently increas
ingly employed for cross-section generation. The Serpent 
code9 has capabilities to generate coarse-mesh group con
stants for multigroup diffusion solvers, and the OpenMC 
code13 has been recently extended to generate a fine-spatial- 
mesh multigroup cross section for high-fidelity whole-core 
transport solvers. However, the accuracy of the Monte Carlo 
approach comes at the computational expense of conver
ging group constant tallies to acceptably low uncertainties. 
Therefore, the Monte Carlo approach is generally consid
ered computationally inefficient for design work involving 
either large reactors and/or thousands of repeated calcula
tions, and thus, it has not been widely adopted as a common 
multigroup cross-section generation tool either.

Because of all the difficulties addressed above, the 
multigroup cross-section data library established by these 
approaches (either lattice code or Monte Carlo code 
approach) is limited. The nuclear data imported from 
the library are only for certain conditions of different 
combinations of stepwise state variables. Some of these 
variables are used to describe the depletion history, 
including the burnup (BU), the fuel and moderator tem
peratures at which the depletion calculation was per
formed, etc. Other variables are used to describe the 
actual reactor operation conditions, including the fuel 
temperature, the moderator temperature, the moderator 
boron concentration, the moderator density, etc. The 
deterministic codes use different methods to estimate 
the cross sections when the condition desired for the 
calculation is not available in the library. Linear interpo
lation techniques, with subtle implementation differences, 
are commonly used in most of the well-known determi
nistic core physics codes for cross-section interpretation, 
including many nodal diffusion codes such as PARCS by 
the University of Michigan,14,15 DIF3D-K by Argonne 
National Laboratory,16 SIMULATE by Studsvik,17 and 
DYN3D by the German Institute of Safety Research,18 

as well as some neutron transport codes such as 
DRAGON by École Polytechnique de Montréal19 and 
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core physics modules in the SCALE code system by Oak 
Ridge National Laboratory.20

Linear interpolation consists of fitting linear polyno
mials within the range of discrete sets of known data for 
the estimation of unknown data. Thanks to its simplicity, 
the implementation of this method into deterministic 
codes is straightforward, and the computational burden 
brought is small. However, linear interpolation can be 
used only when data are available on both sides of the 
unknown data of interest, and its precision is low under 
certain circumstances. Linear regression, on the other 
hand, seeks to construct higher-order polynomials based 
on all the known data. It therefore has wider applicability 
and can provide higher accuracy than the classical linear 
interpolation. In this paper, we will discuss these two 
advantages of using linear regression for the interpreta
tion of multigroup cross sections for deterministic codes, 
together with the associated computational expanse.

A case study on Lightbridge’s metallic fuel element 
is carried out through the paper to demonstrate the feasi
bility and advantages of the linear regression method for 
multigroup cross-section interpretation. It is pointed out 
that a good discussion on the use of the regression 
method for cross-section interpretation has been given 
in the work of Zimin and Semenov.21 The two main 
novelties of the work presented in this paper include the 
following. (1) The work of Zimin and Semenov looked 
into replacing the neutron cross-section libraries by cross- 
section functions of several variables, which led to mod
ifications of the library of a deterministic code before its 
employment. In this study, we looked into a method to 
estimate the neutron cross section by using existing 
libraries, which can be applied to any existing determi
nistic code, with different case-specified libraries, with
out modifying the library of the code. (2) The work of 
Zimin and Semenov first treated the dependency of the 
cross section on BU with a cubic spline interpolation and 
then the dependencies on other state variables with 
a multidimensional polynomial. In this study, we consid
ered all the state variables together, which made the 
process more straightforward while keeping the accuracy 
of the cross-section prediction.

The rest of the paper is organized as follows. In Sec. II, 
the fuel element model used as an example for the case 
study is detailed. In Sec. III, the establishment of the neutron 
cross-section library used in the current study is discussed. 
In Sec. IV, both methodologies used for the cross-section 
interpretation, including the linear interpolation method and 
the linear regression method, are introduced, and the limita
tions of the linear interpolation method are emphasized. In 
Sec. V, comparisons of the cross section estimated for the 

case problem through both methodologies are presented and 
discussed. The advantages of the use of linear regression is 
highlighted. The additional computational burden intro
duced by the use of linear regression is also discussed. In 
Sec. VI, conclusions of the current study are summarized, 
and some foreseeable future endeavors on this subject are 
offered.

II. CASE STUDY MODEL DESCRIPTION

The current study is focused on a fuel rod of an innova
tive fuel design (IFD) based on Lightbridge’s metallic fuel 
design.11 The IFD fuel rod consists of four lobes and has 
a unique cruciform shape. This special fuel design was 
selected in the study to demonstrate the wide applicability 
of the linear regression method (discussed in Sec. IV) for 
cross-section interpretation. The multipurpose three- 
dimensional continuous-energy Monte Carlo particle trans
port code Serpent9 was used in the current study for the 
generation of the neutron cross-section library. A top view 
of the Serpent model of an IFD fuel rod unit cell is shown in 
Fig. 1. This IFD has a circumscribed diameter similar to the 
pitch of conventional UO2 fuel rods and was designed with 
the goal to perform a one-to-one replacement with conven
tional UO2 fuel rods in operating light water reactors. The 
special cruciform shape of the IFD has the potential to 
enhance the coolant-fuel heat transfer as well as mitigate 
the fuel vibration during reactor operation.

As shown in Fig. 1, in the current study, the central 
displacer was modeled as pure zirconium. The metallic fuel 
was modeled as a 50 wt% alloy of zirconium and uranium 
with a 235U enrichment of 19.7 wt%. The cladding was 
modeled as Zircaloy-4 (Ref. 22), consisting of 1.2 wt% of 
tin, 0.18 wt% of iron, 0.07 wt% of chromium, and 98.55 wt% 
of zirconium. The moderator (coolant) surrounding the fuel 
rod was modeled as pure water. The actual dimensions of the 
IFD individual fuel rods are proprietary information. 
Therefore, we adopted the same values as those described 
in a recent publication on the Lightbridge fuel study.23

Periodic boundary conditions were applied to all x, y, and 
z directions during the Serpent calculations. For every calcu
lation performed, a 1 500 000 neutron population, 160 active 
cycles, and 60 inactive cycles were used such that the resul
tant uncertainty was smaller than 10 pcm (per cent mille) for 
the calculated effective neutron multiplication factor keff and 
smaller than 0.5% for the calculated cross sections. Because 
of the consideration of an infinite medium and the ignorance 
of soluble 10B as well as other burnable neutron poisons, the 
initial keff of the fuel rod was calculated to be around 1.540. 
The fact that the initial keff is comparable with that calculated 
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in an existing reference24 demonstrated our model to be 
reasonable. Through a depletion calculation performed with 
a constant fuel temperature Tfuel of 900 K and a moderator 
temperature Tmod of 600 K, we found that the BU of the fuel 
rod modeled could reach about 150 MWd/kgU, as shown in 
Fig. 2. The densities of nuclides in the fuel material at five 
specified BU steps, namely, 0, 10, 50, 100, and 150 MWd/ 
kgU, were calculated by Serpent and stored such that branch 
calculations could be performed without repeating the deple
tion process.

III. DATA LIBRARY ESTABLISHMENT

Different neutron cross sections, including fission 
cross section, capture cross section, scattering cross sec
tion, etc., are used in the deterministic codes for the 
neutron flux calculation. In the current study, only the 

total cross section was generated and stored in the data 
library for the demonstration of the capability of linear 
regression. The total cross section is the sum of many 
other cross sections and thus considered to be adequate in 
this preliminary study as a rule of principle to justify the 
viability of the presented methodology.

The total cross section is dependent on a large number 
of state variables in real life, including Tfuel, Tmod, BU, 
control rod insertion, boron concentration, etc. In the cur
rent study, for simplicity, we investigated the impact of 
only Tfuel, Tmod; and BU on the neutron cross section. 
Similar to the BU steps, five steps were selected for Tfuel 
and Tmod; respectively, while the water density was calcu
lated by considering Tmod as the boiling temperature. The 
steps of the three variables considered are summarized in 
Table I. The macroscopic neutron total cross sections 
calculated in the fuel region in 125 conditions, consisting 
of different combinations of BU, Tfuel, and Tmod, were used 
as the reference library in the current study.

Fig. 1. Serpent model of the Lightbridge IFD fuel rod 
unit cell. 

Fig. 2. Reactivity as a function of the BU of the IFD fuel 
rod. 

TABLE I 

Steps of the Three Variables Considered 

State Variables Considered BU(MWd/kgU) Tfuel(K) Tmod(K)

Different steps considered 0 600 300
10 750 400
50 900 500

100 1050 600
150 1200 625
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Based on the fuel model defined, Serpent calculates the 
critical neutron flux spectra by solving the B1 equations 
iteratively.25 The resultant flux spectra are then used to calcu
late the group cross section by conserving the physical reac
tion rates because only the neutron cross-section data in the 
form of discrete neutron energy group structures can be used 
by multigroup method–based deterministic codes. We 
employed the widely used SCALE 238-group structure in 
the current study. The groupwise neutron total cross sections 
calculated in the fuel region, with Tfuel of 750 K and Tmod of 
400 K, at different BU steps are compared in Fig. 3. Generally, 
the cross section decreases with BU in the thermal region and 
increases with BU in the fast region. However, its behavior 
becomes harder to be predicted in the resonance region.

The percentage difference of the cross section obtained at 
different BUs with respect to that obtained at 0 MWd/kgU 
using Tfuel of 750 K and Tmod of 400 K is shown in Fig. 4. The 
percentage difference of the cross section obtained at different 
values of Tfuel with respect to that obtain at 600 K using BU of 
100 MWd/kgU and Tmod of 400 K is shown in Fig. 5. The 
percentage difference of the cross section obtained at different 
values of Tmod with respect to that obtained at 300 K using BU 
of 100 MWd/kgU and Tfuel of 750 K is shown in Fig. 6.

By comparing Figs. 4, 5, and 6, it could be concluded that 
BU had a significantly larger impact on the cross section than 
the other two variables within the range of consideration. 
Figures 4, 5, and 6 can also provide many other insights 
about the total cross-section changes with the variables of 
interest, which are BU, Tfuel, and Tmod for this specific exam
ple. These insights can be effectively captured by a more 

advanced data interpretation method for the realization of 
cross sections for unknown states. This simple observation 
laid the theoretical foundation of this study, in which we use 
a standard linear regression approach to fulfill the goal of 
providing more precise cross sections for the downstream 
deterministic core physics code.

Fig. 3. Groupwise neutron total cross sections at differ
ent BU steps. 

Fig. 4. Percentage difference of cross sections at different 
BU steps. 

Fig. 5. Percentage difference of cross sections at differ
ent Tfuel steps. 
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IV. METHODOLOGY

In this paper, the linear regression models26,27 are 
developed as the engines for multigroup cross-section 
interpretation. An overview description as well as 
many numerical implementation caveats of this linear 
regression method is discussed in this section. For 
contrast, the linear interpolation method, which is com
monly used for the unknown state cross sections in 
deterministic core physics codes, is also briefly dis
cussed later in this section. Since the linear interpola
tion method is really widely understood, the discussion 
presented here does not focus on the procedure of this 
method but rather on its differences to the linear 
regression method.

IV.A. Linear Regression Method

Linear regression is the process to determine the 
parameter θ of the hypothesis function h xð Þ such that 
the cost function J θð Þ is minimized. For simplicity, 
a univariate example, where the value to be predicted 
y is assumed dependent on only one variable x, is 
given for the explanation of this methodology. When 
the univariate problem is considered, the hypothesis 
function is the goal polynomial, which is defined as

h xð Þ ¼ θT � x ; ð1Þ

where

θ ¼

θ0

θ1

θ2

..

.

θn

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

and

x ¼

1
x
x2

..

.

xn

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

ð2Þ

are vectors with nþ 1 terms and the hypothesis function 
is of order n. The least-squares cost function is defined as

J θð Þ ¼
1
2
Xm

i¼1
h x ið Þ
� �

� y ið Þ
h i2

; ð3Þ

where x ið Þ and y ið Þ are the m pairs of variables and observa
tions used for the training process. When the value to be 
predicted is considered dependent on multiple variables, the 
sizes of both θ and x will increase exponentially.

In this study, the neutron cross section is the pre
dicted variable, and we assumed that the cross section is 
dependent on three system variables: Tfuel, Tmod; and BU. 
The variables to be considered in the hypothesis functions 
of different orders are constructed and summarized in 
Table II. The list of the variables and the complexity of 
the hypothesis functions can be adjusted based on the 
effectiveness of the applications.

A phenomenon that should be avoided when applying 
linear regression is called overfitting, in which the cost func
tion is minimized whereas the resultant hypothesis function 
has poor capability for the prediction of the data sets that are 
not used during the training process. A simple univariate 
example is illustrated below for a more concrete description 
of overfitting and for a better explanation of the ways to avoid 
this phenomenon.

Nine data points were selected randomly from 
a linear polynomial, y ¼ � 5þ 4x, within the range of 
x 2 1; 6½ �. Minor disturbances were added to these data 
points to mimic the uncertainties associated with the 
experimental measurement or numerical simulation. 
These nine data points, as shown in Fig. 7, were then 
used for the linear regression training such that the resul
tant hypothesis function could predict other data points 

Fig. 6. Percentage difference of cross sections at differ
ent Tmod steps. 
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on the linear polynomial. Linear regression was per
formed using hypothesis functions with an order up to 
eight, and the predictions of the eight hypothesis func
tions are compared in Fig. 8. The value of the cost 
function decreased when the order of the hypothesis 
function increased, as shown Fig. 9, and became zero 
when the hypothesis function of order eight was used. 

This is because an eighth-order polynomial could be 
determined when nine points that it passes through were 
given. Both seventh- and eighth-order hypothesis func
tions had small values of their cost function but largely 
deviated from y ¼ � 5þ 4x and will therefore give poor 
predictions for other data points on this original linear 

TABLE II 

Variables Considered in Hypothesis Functions of Different Orders 

Order of Hypothesis 
Function 0 1 2 3 4

Additional variables 1 BU BU2 BU3 BU4

Tfuel T2
fuel T3

fuel T4
fuel

Tmod T2
mod T3

mod T4
mod

BU � Tfuel BU2 � Tfuel BU3 � Tfuel
BU � Tmod BU2 � Tmod BU3 � Tmod
Tfuel � Tmod T2

fuel � BU T3
fuel � BU

T2
fuel � Tmod T3

fuel � Tmod

T2
mod � BU T3

mod � BU
T2

mod � Tfuel T3
mod � Tfuel

BU � Tfuel � Tmod BU2 � T2
fuel

BU2 � T2
mod

T2
fuel � T2

mod

BU2 � Tfuel � Tmod
T2

fuel � BU � Tmod

T2
mod � BU � Tfuel

Fig. 7. The nine data points used as the training set. Fig. 8. Comparison of the hypothesis functions of up to 
eighth order for linear regression. 
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polynomial that were not used for the training process. 
This phenomenon is what people refer to as overfitting.

The parameters determined by linear regression for 
the hypothesis functions are summarized in Table III. 
A common sign of overfitting is that some of the para
meters could have an absolute value that is orders of 
magnitude larger than that of the mean-squared error 
(MSE) of the predictions.

Overfitting can be generally avoided by using one of the 
two methods described below. The first one used a modified 
linear regression methodology such as Ridge regression,28 

Least Absolute Shrinkage and Selection Operator (LASSO) 
regression,29 or Elastic Net regression30 to avoid overfitting. 
Regularization terms were added into the cost functions of 
these three alternative regression methodologies to eliminate 

parameters that are too large. An L2 regularization term was 
used in Ridge regression, and its cost function is expressed as

JRidge θð Þ ¼
1
2
Xm

i¼1
h x ið Þ
� �

� y ið Þ
h i2

þ λ
Xn

j¼1
θ2

j :

ð4Þ

An L1 regularization term was used in LASSO regres
sion, and its cost function is expressed as

JLASSO θð Þ ¼
1
2
Xm

i¼1
h x ið Þ
� �

� y ið Þ
h i2

þ λ
Xn

j¼1
θj
�
�
�
� : ð5Þ

Elastic Net regression can be considered as a linear com
bination of these two regressions, the cost function of 
which is expressed as

JElasticNet θð Þ ¼
1
2
Xm

i¼1
h x ið Þ
� �

� y ið Þ
h i2

þ λ ρ �
Xn

j¼1
θj
�
�
�
�þ 1 � ρð Þ �

Xn
j¼1

θ2
j

h i
;

ð6Þ

where λ > 0 and ρ 2 0; 1½ � are the hyperparameters that 
users need to determine for the best performance of these 
regression methodologies. Ridge regression, LASSO regres
sion, and Elastic Net regression were applied on the data set 
shown in Fig. 7 using hypothesis functions of order up to 
eight. The parameters of these three regression methodologies 
are summarized in Tables IV, V, and VI, and their perfor
mance is shown in Figs. 10, 11, and 12. Large parameters 
were avoided, and hypothesis functions, even of a seventh or 
eighth order, did not largely deviate from the original linear 
polynomial.

The second method to avoid overfitting is the use of 
a subset of data for the validation process. Assuming that 

Fig. 9. Values of the cost function for hypothesis func
tion of different orders. 

TABLE III 

Parameters of the Hypothesis Functions of Different Orders for Linear Regression 

Order of 
h xð Þ θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

1 −4 4
2 −5 5 −0.1
3 −6 5 −0.3 −0.02
4 −10 12 −4 0.7 −0.05
5 20 −46 37 −13 2 −0.1
6 13 −30 23 −6 0.4 0.07 −0.01
7 312 −820 856 −465 144 −26 2 −0.1
8 −1192 3652 −4649 3217 −1326 334 −51 4 −0.1
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besides the nine data points from the training data set, 
shown by the circles in Fig. 13, we have three more 
randomly selected data points, shown by the pentagrams, 
which serve for the validation process. The MSE for the 
validation data set as a function of the order of the 
hypothesis functions is plotted in Fig. 14. By combining 
Fig. 9 and Fig. 14, it can be concluded that the hypothesis 

of order five may have the best capability for the predic
tion of the unknown data on the original linear polyno
mial because it has both a low value of cost function and 
the lowest MSE for the validation data set.

In this study, we adopted the second method to avoid 
the overfitting phenomena in the cross-section interpreta
tion problem. This is not only because the second method 

TABLE IV 

Parameters of the Hypothesis Functions of Different Orders for Ridge Regression 

Order of 
h xð Þ θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

1 −4.30 3.96
2 −5.21 4.61 −0.09
3 −2.63 2.03 0.65 −0.07
4 −0.11 0.29 0.70 0.04 −0.01
5 0.04 0.13 0.26 0.32 −0.07 0.004
6 0.82 −2.75 −1.02 4.19 −1.92 0.34 −0.02
7 −0.54 −0.34 0.04 0.46 0.50 −0.34 0.07 −0.004
8 −0.03 0.00 0.04 0.11 0.16 0.11 −0.09 0.02 −0.001

TABLE V 

Parameters of the Hypothesis Functions of Different Orders for LASSO Regression 

Order of 
h xð Þ θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

1 −4.30 3.96
2 −5.15 4.58 −0.09
3 0.00 0.00 1.08 −0.09
4 −4.71 4.15 0.03 −0.01 −1E-4
5 −4.57 4.03 0.06 −0.01 −3E-4 2E-5
6 −1.14 1.16 0.65 −0.02 −0.004 −1E-4 −2E-6
7 0.00 0.00 0.82 0.01 −0.007 −0.001 1E-5 1.E-05
8 0.00 0.00 0.24 0.20 −0.01 −0.004 −1E-4 1.E-05 4.E-06

TABLE VI 

Parameters of the Hypothesis Functions of Different Orders for Elastic Net Regression 

Order of 
h xð Þ θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

1 −4.30 3.96
2 −5.21 4.62 −0.09
3 0.00 0.00 1.07 −0.09
4 0.00 0.00 0.00 0.32 −0.04
5 −4.86 4.28 0.01 −0.01 −5E-6 4E-5
6 −2.76 2.47 0.41 −0.02 −0.002 9E-6 −6E-6
7 0.00 0.00 0.93 −0.01 −0.01 −4E-4 3E-5 7.E-06
8 0.00 0.00 0.05 0.28 −0.01 −0.005 −1E-4 2.E-05 5.E-06
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helped to determine the best order of the hypothesis func
tions to be used, but also the MSE calculated by this 
method for the validation data set provided a more 
straightforward evaluation on the performance of the 
resultant hypothesis functions. Among the 125 data points 
in the cross-section library generated by Serpent, 100 of 

them were randomly selected to serve as the training data 
set, 19 were used as the validation data set, and the 6 
remaining data points were used as the first evaluation 
set to evaluate the performance of the linear regression 
methodology. Additionally, 60 more data points were gen
erated through Serpent calculation specifically for the 

Fig. 10. Comparison of the hypothesis functions of up to 
eighth order for Ridge regression. 

Fig. 11. Comparison of the hypothesis functions of up to 
eighth order for LASSO regression. 

Fig. 12. Comparison of the hypothesis functions of up to 
eighth order for Elastic Net regression. 

Fig. 13. Validation of the hypothesis functions through 
a new set of data. 
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evaluation of the performance of the linear regression 
methodology, as summarized in Table VII. The perfor
mance evaluation with this second evaluation data set 
would be more convincing as it was generated separately 
from the first 125 data points. The distribution of the 185 
data points in a three-dimensional view is shown in 
Fig. 15.

IV.B. Linear Interpolation Method

In the current study, because the cross section was 
assumed to be dependent on three variables, namely, 
BU, Tfuel, and Tmod, the linear interpolation could also 
be performed according to each of these parameters 
by fixing the other two. A trilinear interpolation could 
also be used by averaging the calculation results 

obtained with each of the three variables. The two 
main differences between linear interpolation and lin
ear regression are the following: 

1. Linear regression uses the data gathered from 
the whole library to train the polynomial model while 
linear interpolation uses only the data points adjacent 
to the ones of interest. The applicability of linear 
interpolation is therefore limited. Among the six con
ditions of the first evaluation data set with BU of 
100 MWd/kgU, which are shown by the blue dots in 
Fig. 15, conditions 1, 2, and 3 cannot be predicted 
through linear interpolation with Tmod whereas condi
tions 1, 3, 4, and 6 cannot be predicted through linear 
interpolation with Tfuel. Only condition 5 can be pre
dicted by trilinear interpolation. Alternative options 
exist when the adjacent points are not available, includ
ing using data from points that are farther away from 
the point of interest with linear interpolation or using 
extrapolation. However, these alternative options would 
further decrease the precision of the interpolation pre
dictions and were therefore not considered in the cur
rent study.

2. Linear interpolation trains only first-order poly
nomials while linear regression employs higher-order 
polynomials, which makes the data gathered from the 
whole library to be used more efficiently. First-order 
polynomials obtained through linear interpolation have 
low performance in certain circumstances. The curves 
in Fig. 3 are plotted again in Fig. 16 by zooming to the 
neutron energy range of 0:13eV; 1:3eV½ �. Linear inter
polation will not work well for neutron energy group 
184 because the cross section cannot be linearly corre
lated to BU. The performance of linear interpolation 
will be worse for energy group 209 because the varia
tion of cross section as a function of BU is not 
monotone.

Nonmonotone data can be problematic for the linear 
interpolation method. Assume that we would like to estimate 

Fig. 14. Mean-squared error for the validation data set as 
a function of the order of the hypothesis functions. 

TABLE VII 

Steps of the Three State Variables Considered for the Second Evaluation Data Set 

State Variables Considered BU(MWd/kgU) Tfuel(K) Tmod(K)

Different steps considered 0 675 350
10 825 450
50 975 550

100 1125
150
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data y at location x using known data y1 at location x1 and y2 at 
location x2(x1 � x � x2). Using linear interpolation, we can 
estimate y as

ŷlinear ¼ y1 þ
y2 � y1

x2 � x1
x � x1ð Þ : ð7Þ

Or, by using logarithmic interpolation, we can estimate 
y as

ŷlog ¼ y1 � e
log y2=y1ð Þ
log x2=x1ð Þ

log x=x1ð Þ
: ð8Þ

It is pointed out that y1 � ŷlinear � y2 and y1 � ŷlog � y2. 
In the case of monotone data, where y1 � y � y2, both 

linear interpolation and logarithmic interpolation can 
probably provide a good estimation of y. However, in 
the case of nonmonotone data, where y � both y1 and y2 
or y � both y1and y2, apparently neither linear interpola
tion nor logarithmic interpolation can give a good estima
tion of y.

V. CASE STUDY RESULTS

Python, as one of the most popular languages for 
scientific computing, was used in the current study as 
the programming language to perform linear regression 
analysis. Known as an open-source code, Python has 
largely benefited from packages developed by third par
ties, including the Scikit-learning31 package that we used 
in this study. Consisting of a wide range of state-of-art 
machine-learning algorithms, this package can be 
employed to solve both supervised and unsupervised 
machine-learning problems. Linear regression is consid
ered as one of the supervised problems and was addressed 
by using Scikit-learning in the current study.

In this study, we considered the cross sections of 
the 238 energy groups to be independent of each other 
and conducted the linear regression analysis for the 
cross section of each energy group separately. 
Correlations of the cross sections of different energy 
groups may exist but were not considered in the current 
study. This is because in terms of the purpose of this 
study, the simple hypothesis functions built for each 
energy group were sufficient for the demonstration of 
the advantages brought by the use of linear regression. 
The reading of the library file and the generation of the 
hypothesis functions for the 238 energy groups were 
completed within 15 s using a single processor core. 
The hypothesis function of most of the energy groups 
was determined to have an order of four (to give the 
lowest MSE). The parameters of the hypothesis func
tion for groups 184 and 209 are plotted in Figs. 17 and 
18 as a demonstration of the representative parameters 
used in the method. These two groups were selected 
for plots because they were considered the most diffi
cult groups to estimate accurate cross sections by the 
traditional linear interpolation approach. Although we 
employed only very standard linear regression metho
dology with no regularization terms added to the cost 
functions, none of the parameters were unrealistically 
large thanks to the use of the validation data set, as 
described in Sec. IV.A

The performance of the linear regression methodology 
was then evaluated. Groupwise neutron cross sections 

Fig. 15. Distributions of the training and the validation 
data sets. 

Fig. 16. Percentage difference of cross sections at differ
ent BU steps for neutron energy groups 184 and 209. 
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were calculated for the six conditions of the first evalua
tion data set with both the linear regression and the linear 
interpolation methodologies and compared to that gener
ated by Serpent, as shown in Figs. 19 and 20. For both 
energy groups, the cross sections estimated through linear 
interpolation with BU had the largest errors, and the under
prediction was on the order of 10%. Linear interpolation 

with Tfuel and Tmod had narrower applicability but provided 
better precision because the impact of these two para
meters on the cross section was significantly smaller than 
that of BU within the range of consideration, as discussed 
in Sec. III. The trilinear interpolation provided medium 
precision but had the narrowest application because it is 
the average of the first three calculations. In contrast, 
linear regression was applicable at every point of interest, 
and its prediction agreed well with the Serpent calculation. 
In Figs. 21 and 22, group 184 and group 209 neutron cross 
sections calculated with linear interpolation for the second 
evaluation data set were further compared to that generated 
by Serpent. The linear regression predictions showed good 
agreement with the Serpent data for both energy groups at 
all five BUs.

Groupwise neutron cross sections for all the 238 energy 
groups were calculated with both methodologies for condi
tion 5 of the first evaluation data set, which had BU of 100 
MWd/kgU, Tfuel of 750 K, and Tmod of 400 K. The percen
tage errors of the linear regression prediction are shown in 
Fig. 23 in comparison with that obtained through linear 
interpolation. No spikes were observed for the linear regres
sion curve, which proved the methodology to work well for 

Fig. 17. Parameters of the hypothesis function for group 
184. 

Fig. 18. Parameters of the hypothesis function for 
group 209. 

Fig. 19. Comparison of the cross sections for group 184 
generated for the first evaluation data set. 

Fig. 20. Comparison of the cross sections for group 209 
generated for the first evaluation data set. 
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all 238 energy groups. The maximum and the averaged 
prediction errors for the 238 energy groups are summarized 
in Table VIII. The smaller values of both errors demon
strated superior precision provided by linear regression 
than linear interpolation.

VI. CONCLUSIONS AND FUTURE WORK

In this study we performed a preliminary investigation on 
the feasibility of providing multigroup cross sections for 
deterministic neutronic codes by using linear regression mod
els. With the help of Monte Carlo calculations with Serpent, 

we built a data library of total cross section calculated for 185 
different conditions. We used 100 data points of them to train 
the linear regression models and 19 data points for the model 
validation. The remaining 66 data points were used to test and 
evaluate the performance of the linear regression methodol
ogy in a manner of comparing to the results with the linear 
regression methodology. We considered the cross sections of 
the 238 energy groups independent and built linear regression 
hypothesis functions for them separately. Both the maximum 
and the averaged prediction errors of linear regression for the 
238 groups were smaller than those of linear interpolation, 
which demonstrated superior precision provided by the linear 
regression approach.

The superior performance of linear regression over 
linear interpolation can be explained by the following two 
theoretical reasons. (1) Linear regression used the data 
gathered from a wider range in the library to train the 
polynomial model while linear interpolation used up to 

Fig. 22. Comparison of the cross sections for group 209 
generated for the second evaluation data set. 

Fig. 23. Comparison of the cross sections generated for 
condition 5 of the evaluation data set. 

TABLE VIII 

Maximum and Averaged Linear Regression and Linear Interpolation Predictions 

Linear 
Regression

Linear 
Interpolation, BU

Linear 
Interpolation, 

Tfuel

Linear 
Interpolation, 

Tmod Trilinear

Maximum error (%) 0.13 9.15 1.20 0.69 3.04
Averaged error (%) 0.002 0.520 0.031 0.023 0.191

Fig. 21. Comparison of the cross sections for group 184 
generated for the second evaluation data set. 
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six points in the current study. (2) Linear interpolation 
trained only first-order polynomials while linear regres
sion employed higher-order polynomials. The higher- 
order polynomials used by the linear regression metho
dology made the data gathered from the whole library to 
be used more efficiently.

Moreover, we proved in this study that linear regression 
had wider applicability than linear interpolation. In terms of 
the computational expense of the linear regression process, 
the reading of the library file and the generation of the 
hypothesis functions for the 238 energy groups were com
pleted within 15 s using a single processor core. The short 
computation time meets expectations as the main computing 
powers needed for the linear regression are essentially for 
function evaluations. The effective computation procedure 
proved the additional computational burden caused by the 
implementation of the linear regression methodology in 
cross-section interpretation to be acceptable in practice.

We believe that the linear regression methodology 
can be implemented into any existing deterministic code 
to improve its capability of cross-section interpretation, 
while additional verifications are needed when specific 
cases are considered. For future work, we will implement 
the linear regression methodology into one of the popular 
deterministic codes for cross-section interpretation and 
use this modified deterministic code for the calculation 
of benchmark transient problems. The calculation results 
should further demonstrate the improvements brought by 
the implementation of linear regression.
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