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Abstract — Thermal stratification (TS) is a thermal-fluid phenomenon that can introduce large uncertainties to
nuclear reactor safety. The stratified layers caused by TS can lead to temperature oscillations in the reactor core.
They can also result in damages to both the reactor vessel and in-vessel components due to the growth of thermal
fatigue cracks. More importantly, TS can impede the establishment of natural circulation, which is widely used
for passive cooling and ensures the inherent safety of numerous reactor designs. A fast-running one-dimensional
(1-D) model was recently developed in our research group to predict the TS phenomenon in pool-type sodium-
cooled fast reactors. The efficient 1-Dmodel provided reasonable temperature predictions for the test conditions
investigated, but nonnegligible discrepancies between the 1-D predictions and the experimental temperature
measurements were observed. These discrepancies are attributed to the model uncertainties (also known as
model bias or errors) in the 1-D model and the parameter uncertainties in the input parameters.

In this study, we first recognized through a forward uncertainty analysis that the observed discrepancies
between the computational predictions and the experimental temperature measurements could not be explained
solely by input uncertainty propagation. We then performed an inverse uncertainty quantification (UQ) study to
reduce the model uncertainties of the 1-D model using a modular Bayesian approach based on experimental
data. Inverse UQ serves as a data assimilation process to simultaneously minimize the mismatches between the
predictions and experimental measurements, while quantifying the associated parameter uncertainties. The
solutions of the modular Bayesian approach were in the form of posterior probability density functions, which
were explored by rigorous Markov Chain Monte Carlo sampling. Results showed that the quantified parameters
obtained from the inverse UQ effectively improved the predictive capability of the 1-D TS model.

Keywords — Thermal stratification, sodium-cooled fast reactor, sensitivity analysis, inverse uncertainty
quantification.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

Thermal stratification is an important phenomenon that
can take place in many components of nuclear power plants,
such as the plena of the liquid-metal-cooled reactors and the

piping systems of the water-cooled reactors. This phenom-
enon can be established during different transients of a reactor
with power changes when coolant jets enter an enclosure
filled with an ambient fluid with a different temperature. For
example, thermal-stratified layers of liquid sodium with
a large vertical temperature gradient could be established in
the upper plenum of a sodium-cooled faster reactor (SFR)*E-mail: zwu@vcu.edu
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during both protected loss-of-flow transients with scram and
unprotected loss-of-flow accidents without scram.1 Thermal
stratification introduces uncertainties to core safety because
the thermal-stratified layers can lead to temperature oscilla-
tions in the reactor core.2 Thermal stratification can also result
in damages to both the reactor vessel and in-vessel compo-
nents due to thermal fatigue crack growth.3More importantly,
thermal stratification can impede the establishment of natural
circulation,4 which is widely used for passive cooling and
ensures the inherent safety of numerous reactor designs,
including pool-type SFRs, high-temperature gas-cooled reac-
tors, and small modular boiling water reactors.

Many computational efforts have been made to pre-
dict the thermal stratification phenomenon with different
fidelities to prevent its occurrence or to mitigate the
damage caused. Several system-level codes are capable
of predicting the thermal stratification phenomenon at
a low computational cost,5–7 but can only provide
approximated solutions for simple cases. Computational
fluid dynamics (CFD) modeling, on the contrary, gives
accurate calculations of thermal stratification.8–10

However, the CFD calculations are computationally
expensive and time consuming, and are not suitable
when a large number of transient calculations are needed
for core safety analysis. In our previous publication,11,12

we developed a fast-running one-dimensional (1-D) sys-
tem-level model to predict thermal stratification phenom-
enon in the upper plenum of a pool-type SFR, which is
desirable when numerous transient calculations are to be
performed. Our 1-D model showed similar performance
with that of the CFD model for the cases that we studied,
but nonnegligible discrepancies between the
1-D predictions and the experimental temperature mea-
surements were observed.11 It is pointed out that while
the discrepancy between 1-D calculations and experimen-
tal temperature measurements was considered as the fig-
ure of merit in terms of the prediction of thermal
stratification, more proper metrics may exist when the
prediction of natural circulation is focused.

Continuing with previous research efforts, we
improved the 1-D thermal stratification model in this
work, seeking a better understanding of the discrepancies
between the predictions and measurements. We first per-
formed a forward uncertainty analysis and determined
that the observed discrepancies between the
1-D predictions and the experimental measurements
could not be explained solely by input uncertainty propa-
gation, whereas the model uncertainties (also known as
model bias or errors) associated with the 1-D model also
needed to be considered. We then improved the
1-D model by determining the optimum parameters to

be used for the correlation of the turbulence-enhanced
sodium thermal conductivity through an inverse uncer-
tainty quantification (UQ) analysis, which has been
widely used in the literature for the calibration of ther-
mal-hydraulic parameters.13,14 We used the Markov
Chain Monte Carlo (MCMC) sampling method to explore
the posterior probability density functions (PDFs) gener-
ated from the Bayesian-theory-based inverse UQ process
employed. Instead of simply determining the point esti-
mates of the parameters that minimize the mismatches
between the predictions and experimental data, the
inverse UQ process used in the current study also quanti-
fied the uncertainties associated with the estimations.

The rest of this paper is organized as follows. In Sec.
II, the test conditions used for the inverse UQ process are
summarized. The apparatus, in which the experimental
data were obtained, is briefly introduced in this section as
well. The 1-D model is also presented to emphasize the
terms to be improved. In Sec. III, a tentative forward UQ
analysis is conducted with the intention of determining
whether the observed discrepancies between the
1-D predictions and the experimental measurements
could be explained solely by input uncertainty propaga-
tion, and also to identify possible terms needing improve-
ment in the 1-D model. In Sec. IV, an inverse UQ
analysis is performed to develop a better correlation for
the turbulence-enhanced sodium thermal conductivity
that improves the 1-D predictions. In Sec. V, the work
accomplished in this study is summarized, and some
future research directions in this regard are envisioned.

II. EXPERIMENT CONFIGURATION AND COMPUTATIONAL
MODEL

II.A. Experimental Configuration

The experimental data used for the validation of the
1-D thermal stratification model were obtained in the
Thermal Stratification Experimental Facility (TSTF)
developed at the University of Wisconsin-Madison.15

A diagram of the test section of the TSTF is shown in
Fig. 1.

During an experimental test, sodium jets were injected
from the bottom portion of the TSTF into the test section to
mimic the impinging jets flowing into the upper plenum of
an SFR. Only the cases where jets with lower temperatures
enter a tank filled with higher-temperature fluid were con-
sidered in the experiments at this moment. Two subcases
were further considered. In subcase I, an upper instrumenta-
tion structure (UIS) was installed in the tank (see Fig. 1) to
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emulate the in-vessel components located in the upper ple-
num of an SFR that block the inlet of the impinging jets. In
subcase II, no UIS was installed. The temperature measure-
ments were continuously collected at four different axial
locations during the experiments, as indicated by the ther-
mocouple (TC) positions in Fig. 1. Two TCs measured the
temperature of the ambient fluid in the tank simultaneously
at the same axial location. The experiments were conducted
under nine test conditions, with three corresponding to sub-
case I and the others corresponding to subcase II. The test
conditions of the experiments are summarized in Table I.
All experimental data were compiled in an Excel file for
further investigations.

II.B. One-Dimensional Thermal Stratification Model

Equation (1), which describes the temperature field
model used in our previous studies11,12 to predict the tem-
perature profile of the ambient fluid in the sodium tank,
essentially represents the energy conservation of the sodium
after incorporating the mass continuum principle:

ρsf cp;sf
qTsf
qt

þ ρsf cp;sf
Qjet

Asf

qTsf
qz

� q
qz

ksf
qTsf
qz

� �

¼ cp;jetρjet
Asf

Q
0
jet Tjet � Tsf
� �

; ð1Þ

where
ρsf = mass density of the ambient fluid

cp,sf = heat capacity of the ambient fluid

Asf = surface area of the ambient fluid

Tsf = temperature of the ambient fluid

ρjet = mass density of the impinging jet

cp,jet = heat capacity of the impinging jet

Qjet = volumetric flow rate of the impinging jet

Tjet= temperature of the impinging jet

Q
0
jet= volumetric dispersion rate of the impinging jet.

One unique feature of Eq. (1) is the use of integral
techniques to convert the jets to heat source terms appearing
on the right side of the diffusion convection.7 In Eq. (1), ksf is
the thermal conductivity of the ambient fluid, which may
differ from the static thermal conductivity kc of the ambient
fluid in different flow conditions. This is because the ambient
fluid may become turbulent due to the dispersion of the
impinging jets, and the heat transfer of the ambient fluid
may be enhanced by the turbulence. In our previous publica-
tion, we used the correlation established by Shih et al.16 to
estimate the relation between the turbulence-enhanced

Fig. 1. Test section of the TSTF with TCs and outlet
positioned.

TABLE I

Test Conditions of the Experiments Performed

Test Number Inlet Temperature (°C)
Initial Temperature

(°C) Flow Rate (gpm)

1 200 250 6 With UIS
2 200 250 10
3 200 225 10
4 200 300 1.5 Without UIS
5 200 250 3
6 200 300 3
7 200 250 3.7
8 200 300 10
9 200 250 10
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thermal diffusivity αtot and the static thermal diffusivity αc by
neglecting the impact of sodium mass density and heat capa-
city on its thermal diffusivity, and assumed the correlation
between ksf and kc to be similar to that between αtot and αc.
Shih et al. defined threemixing regimes according to the ratio
of the turbulent Reynolds number Reτ to the Richardson
number Ri and established the empirical correlations between
αtot and αc with different coefficients in each mixing regime,
as summarized in Table II.

In Eq. (1), Q
0
jet represents the linear volumetric dis-

persion rate of the impinging jet. It was assumed that the
impinging jets uniformly dispersed in the ambient fluid
within a length of Ljet, and

Q
0
jet ¼ Qjet=Ljet : ð2Þ

In subcase I, the jets hit the bottom of the UIS after entering
the test section and were not able to rise above the UIS before
dispersing in the ambient fluid. Therefore, we assumed that
the impinging sodium was evenly dispersed in the ambient
fluid within the distance between the bottom of the UIS and
the jet inlet surface zUIS, which was about 5 cm in the experi-
ment, and Ljet ¼ zUIS. In subcase II, the modeling of Ljet
became more difficult due to the absence of the UIS. The
correlation for the jet velocity was proposed to be

dvjet ¼ � C
v2ρsf
ρjet

þ ρjet � ρsf
ρjet

g0

 !
dt ; ð3Þ

where v was the initial jet velocity, and g0 was the
standard acceleration due to gravity. The coefficient C
was found to be 4.3 in our previous publication.11

III. FORWARD UQ ON THE IMPACT OF DIFFERENT
PARAMETERS

This section presents the results from a preliminary
forward UQ analysis. A sampling-based forward UQ
approach was employed in this section. For each forward

calculation (also known as realization), we simply varied
one individual input parameter under investigation within
a certain assumed uncertainty range and kept all other para-
meters unchanged. The uncertainties associated with the
input parameter were determined by analyzing the statistical
distributions of the outcomes. The intention of the forward
UQ analysis was to determine if the observed discrepancies
between the 1-D predictions and the experimental measure-
ments could be explained solely by the input uncertainty
propagation. The terms needing improvement in the
1-D thermal stratification model were also identified
according to the forward UQ analysis.

III.A. Subcase I with UIS Installed

The test condition in test 1 in Table I was used for
forward UQ analysis of subcase I with UIS installed.
Figure 2 compares the 1-D model predictions to the
average temperature measurement of the two TCs at
each of the four axial locations in this test condition.
The predicted temperature had a slight rise after 100 s
of elapsed time because the inlet temperature was not
perfectly controlled during the experiment and became
slightly hotter than 200°C after the 100-s elapsed
time.

To highlight the discrepancies, Fig. 3 illustrates the
percentage differences of the predicted temperatures to
the measurements along the elapsed time. Note the tem-
perature percentage changes were calculated based on
kelvins. As indicated in Fig. 3, the temperature difference
calculated for TC 26/TC 32 at 175 s elapsed time had the
largest discrepancy (~4.5%) with the measurements, thus
this temperature was selected as the reference for the
further uncertainty source investigation in the following
steps.

The input parameters and the thermal-hydraulic sys-
tem parameters considered to impact the thermal stratifi-
cation phenomenon in this subcase included (1) jet
volumetric flow rate, (2) jet temperature, (3) sodium
heat capacity, and (4) sodium thermal conductivity.

TABLE II

Correlations between αtot and α*

Regime Reτ
Ri αtot

Molecular Reτ
Ri < 150 αc

Transitional 150 < Reτ
Ri < 1000 0.015 Reτ

Ri � αc
Energetic 1000 < Reτ

Ri 0.015 Reτ
Ri

� �0:5 � αc
*Reference 16.
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Based on our knowledge of the precision of the measure-
ment equipment employed in the experiment, the jet
volumetric flow rate and jet temperature were varied
uniformly between 97% and 103% of their reference
values. Sodium heat capacity was varied uniformly
between 97% and 103% of its reference value,17 and
sodium thermal conductivity was varied uniformly
between 95% and 105% of its reference value.17 The

resultant ambient temperatures calculated for TC 26/TC
32 corresponding to various levels of variations to the
reference jet volumetric flow rate are compared with the
experimental data in Fig. 4, as an example.

The percentage change of the temperature calculated for
TC 26/TC 32 at 175 s at various levels of changes for the four
parameters considered are compared in Fig. 5. An uncertainty
of ±3% in the calculation of the sodium heat capacity and of

Fig. 2. Comparison of predictions with experiments in test 1.

Fig. 3. Percentage difference between predictions and experiments in test 1.
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±5% in the calculation of the sodium thermal conductivity
had a negligible impact on the resultant temperature.
However, the percentage changes of the temperature of inter-
est due to the uncertainties of the inlet temperature (~1.2%)
and the inlet volumetric flow rate (~0.4%) were more

significant, and the uncertainties caused by the error propa-
gation in the computational model were not enough to com-
pensate for the temperature discrepancies between the
1-D predictions and the experimental measurements.

III.B. Subcase II with No UIS Installed

The test condition in test 4 in Table I was used for the
forward UQ analysis for subcase II with no UIS installed.
The 1-D predictions were compared with the average
temperature measurement of the two TCs at each of the
four axial locations, as shown in Fig. 6. The temperature
calculated for TC 26/TC 32 at the 700-s elapsed time was
selected to be the reference for the UQ because it had the
largest discrepancy (~4.5%) with the measurements, as
shown in Fig. 7.

In addition to the four parameters investigated in
subcase I, the change in the temperature of interest
induced by the uncertainty of coefficient C in Eq. (3)
was also studied. Jet volumetric flow rate, jet tempera-
ture, and the coefficient C were varied uniformly between
97% and 103% of their reference values. Sodium heat
capacity was varied uniformly between 97% and 103% of
its reference value, and sodium thermal conductivity was
varied uniformly between 95% and 105% of its reference
value. The resultant ambient temperatures calculated for
TC 26/TC 32 corresponding to various levels of varia-
tions to the reference jet volumetric flow rate are com-
pared with the experimental data in Fig. 8, as an example.

The percentage change of the temperature calcu-
lated for TC 26/TC 32 at 700 s due to the five para-
meters selected are compared in Fig. 9. An uncertainty
of ±3% in the sodium heat capacity and coefficient C
and of ±5% in the sodium thermal conductivity had
negligible impact on the resultant temperature. The
percentage change of the temperature of interest was
more significant due to the uncertainties of the inlet
temperature (~0.9%) and the inlet volumetric flow rate
(~0.5%), but was not enough to compensate for the
temperature discrepancies between the experimental
measurements and the 1-D predictions.

According to the forward UQ analysis for both sub-
cases outlined previously, we recognized that the
observed discrepancies between the 1-D predictions and
the experimental measurements could not be explained
solely by input uncertainty propagation. The discrepan-
cies therefore are likely caused by other model deficien-
cies. The forward UQ analysis showed that an uncertainty
of ±5% in sodium thermal conductivity had a negligible
impact on the resultant temperature prediction. However,
through the enhancement of turbulence, the sodium

Fig. 4. Ambient temperature prediction at TC 26/TC 32
(69.9 cm) with various perturbed impinging jet flow rates
in test 1.

Fig. 5. Temperature percentage changes due to different
parameters at 175 s in test 1.
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thermal conductivity could become several times larger
than that in a static state. The correlation of Shih et al.16

was used in the first place, according to which ksf ¼ kc.
However, this empirical correlation might not be applic-
able to the 1-D thermal stratification model because it

was established by considering the impinging jet and the
ambient fluid as a mixture, while the 1-D thermal strati-
fication model focused on the ambient fluid and consid-
ered the impinging jet as a heat source. The boundaries of
the regimes and the coefficients of the correlations may

Fig. 6. Comparison of predictions with experiments in test 4.

Fig. 7. Percentage difference between predictions and experiments in test 4.
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therefore be different. In Sec. IV we will determine the
optimal coefficients a and b such that the relationship of
ksf and kc in a form of

ksf ¼ a
Reτ
Ri

� �b

� kc ; ð4Þ

can minimize the discrepancy between the 1-D prediction
and the experimental data. The advanced inverse UQ
process assisted us in achieving this goal.

IV. INVERSE UQ ON TURBULENCE-ENHANCED SODIUM
THERMAL CONDUCTIVITY

Inverse UQ is a Bayesian-inference-based data-
assimilation method. Compared to conventional para-
meter-calibration methods, including those based on linear
least squares, inverse UQ has the advantage of being able
to simultaneously determine the point estimates that mini-
mize the mismatches between the predictions and experi-
mental measurements while quantifying the associated
parameter uncertainties. In the following subsections, the
inverse UQ method is briefly introduced, and the applica-
tion of the inverse UQ method to the 1-D thermal stratifi-
cation model is then detailed.

IV.A. Methodology of the Inverse UQ Process

The philosophy of the inverse UQ method is briefly
introduced in this section because detailed and in-depth
discussions of the formulation of the inverse UQ problem
have already been given in numerous existing
publications.18,19 According to the Bayesian theory, the
posterior PDF can be expressed as a product of the prior
PDF and the likelihood function:

pðθ�jyE; yMÞ / p θ�ð Þ � 1ffiffiffiffiffiffi
Σj jp

� exp � 1

2
yE � yM � δ
� �T

Σ�1 yE � yM � δ
� �	 


; ð5Þ

where p θ�ð Þ denotes the prior PDF, and pðθ�jyE; yMÞ
denotes the posterior PDF, which is the Bayesian solution
to the inverse UQ problem. These two PDFs, respec-
tively, represent the degrees of the belief of θ�, which
are the true values of the calibration parameters before
and after observing the experimental data yE xð Þ where x
represents the design variables (such as initial and bound-
ary conditions). In the current study, the calibration vari-
ables θ included parameters a and b in Eq. (4), as well as
C in Eq. (3). The design variables x included the initial
ambient fluid temperature, jet temperature, and jet volu-

metric flow rate, etc. yM xð Þ is the computational

Fig. 8. Ambient temperature prediction at TC 26/TC 32
(69.9 cm) with various perturbed impinging jet flow rates
in test 4.

Fig. 9. Temperature percentage change due to different
parameters at 700 s in test 4.
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prediction of the 1-D thermal stratification model. δ xð Þis
the model discrepancy caused by the missing or insuffi-
cient underlying physics of the 1-D model, as well as
numerical approximations. In the current study, δ xð Þis
mainly caused by the errors introduced by the approxima-
tions of the 1-D thermal stratification model, including
the assumption of a uniform distributed impinging jet
dispersion rate and other simplifications made during its
derivation.

The symbol Σ in Eq. (5) denotes the likelihood covar-
iance matrix, whose diagonal entries represent the variance
of each error component with the off-diagonal entries
representing their covariance. Σ consists of several sources
of uncertainties, including Σexp, Σbias, and Σcode:

Σ ¼ Σexp þ Σbias þ Σcode ; ð6Þ

where Σexp is the covariance matrix of experiment uncer-
tainty due to measurement noise. In the current study, the
experiment uncertainty was associated with the ambient
fluid temperature measurement and was assumed to be
independent and identically normally distributed. We
considered that the TCs had no systematic bias, and the
measurement uncertainty was 2%. Σbias is the covariance
matrix of model discrepancy δ xð Þ, the existence of which
has been proven in our previous publication.11 δ xð Þ is
usually described by establishing a Gaussian process
(GP) model.20,21 Because of the lack of the experimental
data, we were not able to establish the GP model for δ xð Þ,
and therefore ignored this term in this study.

The posterior PDF formulation shown in Eq. (5) is
nonstandard and not normalized, and cannot be directly
used to generate samples like any conventional distribu-
tions. Therefore, the MCMC (Ref. 22) sampling method
is often used to explore the posterior function numerically
by generating samples that follow a distribution propor-
tional to the posterior PDF. MCMC requires a sufficiently
large number of samples to fully explore the posteriors,
which makes the calculation computationally expensive.
In order to reduce the computational burden, many meth-
odologies are usually employed to establish surrogate
models for yM xð Þ during the MCMC sampling process.
Typical examples of the surrogate models include GP
modeling, sparse grid stochastic collocation, and polyno-
mial chaos expansion, etc. However, the use of the sur-
rogate model inevitably introduces additional
uncertainties into the resultant posteriors calculated
through the inverse UQ process, and Σcode in Eq. (6) is
the corresponding covariance matrix representing those
uncertainties. In the current study, each full 1-D model
calculation took less than 1 s. Because of the acceptable

computational expense required, we decided not to use
a surrogate model to avoid the associated uncertainties.
Given the considerations discussed here, in the current
study Eqs. (5) and (6) are simplified to

p θ�jyE; yM� � / p θ�ð Þ � 1ffiffiffiffiffiffi
Σj jp

� exp � 1

2
yE � yM
� �T

Σ�1 yE � yM
� �	 


; ð7Þ

and

Σ ¼ Σexp : ð8Þ

IV.B. Subcase I with UIS Installed

As shown in Table I, tests 1, 2, and 3 correspond to
the experiments with UIS installed in the tank. The
ambient fluid temperature was measured continuously in
all the experiments. The temperature measurements at 11
elapsed times in test 1 and 3, and at 8 elapsed times in
test 2 were used to cover the entire transient of the
experiments, which can be clearly viewed in Figs. 13,
14, and 15.

In this subcase, data from tests 1 and 2 were used for
the inverse UQ process, and data from test 3 were used
for the validation of the resultant posteriors.
Noninformative uniform priors of the parameters, includ-
ing a 2 0; 20½ � and b 2 0; 1½ �, were used to reflect our
ignorance of both parameters. In total, 100 000 samples
were generated for the inverse UQ study, which cost
about 14 h of a single processor unit. The number of
iterations used was chosen to ensure the convergence of
each parameter. The first 10 000 samples were discarded
for burn-in, so that the sample points generated before
the convergence would not pollute the estimation of
the posteriors. Then, every 20th sample was kept
from the remainder for thinning the chain to reduce
autocorrelation among the samples, which left us with
4500 samples. The trace plots of the 4500 samples for
a and b are shown in Fig. 10. Due to the nature of the
inverse UQ method, the coefficients a and b determined
were not the point estimates, but the probability distribu-
tions. We can therefore see oscillations in the traces of
a and b around their nominal values. The resultant poster-
iors of both parameters for subcase I are shown in
Fig. 11. Gaussian distributions a,N 8:05; 0:90ð Þ and

b,N 0:33; 3� 10�3
� �

were fitted to the posteriors of
both coefficients, which were accepted by the
Kolmogorov-Smirnov test23 at the 5% significance
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level. This suggested that the optimal value of a should
be 8.05 with an uncertainty of ±0.95, and the optimal
value of b should be 0.33 with an uncertainty of ±0.055.
Figure 12 shows good agreement between the empirical
cumulative distribution functions (CDFs) of both coeffi-
cients and the CDF of the fitted Gaussian distributions,
which again confirmed the fit of the distributions to the
posteriors to be reasonable.

Comparisons of the 1-D thermal stratification predic-
tion before and after the inverse UQ process with the
experimental data are shown in Figs. 13, 14, and 15 for
tests 1, 2, and 3, respectively. The maximum and the
averaged values of the magnitude (absolute value) of
the discrepancies between the 1-D predictions and the
experimental measurement are summarized in Table III.

Because tests 1 and 2 were used during the inverse UQ
process, the resultant 1-D predictions for those two test
conditions had a trend that was much more compatible
with that of the experimental data, and the magnitude of
the discrepancies was largely decreased. However, due to
the missing or insufficient physics of the 1-D model, the
prediction was not able to perfectly match the experimen-
tal data even after the inverse UQ process. When test 3
was considered, the inverse UQ process reduced the
magnitude of the discrepancies between the
1-D prediction and the experimental data, but not as
prominently as for the other two test conditions. This
again revealed the missing or insufficient physics of the
1-D model. However, the fact that the trend of
1-D prediction for test 3 was improved, as well as the
other two test conditions, proved the use of the inverse
UQ process to be reasonable.

IV.C. Subcase II with No UIS Installed

As shown in Table I, tests 4 through 9 are experi-
ments with no UIS installed in the tank. Temperature
measurements at 11 elapsed times in tests 4 through 7,
and at five elapsed times in tests 8 and 9 were used such
that the entire transient of the experiments was covered,
as shown in Figs. 19 through 24.

In this subcase, tests 5 and 6 were used to perform
the inverse UQ process, while tests 4, 7, 8, and 9 were
used for the validation of the resultant posteriors.
Noninformative uniform priors of the parameters, includ-
ing a 2 0; 50½ � and b 2 �2; 2½ �, were used to reflect our
ignorance of both parameters. Similar to subcase I,
100 000 samples in total were generated for the inverse
UQ study, which again cost about 14 h of a single pro-
cessor unit. The number of iterations used was chosen to

Fig. 10. Trace plots for parameters a and b for subcase I.

Fig. 11. Posteriors of (a) a and (b) b explored by MCMC samples and the fitted Gaussian distributions for subcase I.
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ensure the convergence of each parameter selected. The
first 10 000 samples were discarded during the posterior
exploration for burn-in so that the sample points gener-
ated before the convergence would not pollute the esti-
mation of the posteriors. Then, every 20th sample was
kept from the remainder for thinning of the chain to
reduce autocorrelation among the samples, which left us
with 4500 samples. The trace plots of the 4500 samples
for a and b are shown in Fig. 16, and the resultant
posteriors of both parameters for subcase II are shown
in Fig. 17. Gamma distribution Γ 5:4; 2:2ð Þ was fitted to
coefficient a, while Gaussian distribution N 0:13; 0:02ð Þ
was fitted to coefficient b. This suggested that the optimal
value of a should be 9.7 with an uncertainty of ±5.1, and

the optimal value of b should be 0.13 with an uncertainty
of ±0.14. Both fitted distributions were accepted by the
Kolmogorov-Smirnov test at the 5% significance level.
Figure 18 shows good agreement between the empirical
CDFs of both coefficients and the CDF of the fitted
distributions, which again confirmed the fit of the distri-
butions to the posteriors to be reasonable.

Comparisons of the 1-D thermal stratification predic-
tion before and after the inverse UQ process with the
experimental data are shown in Figs. 19 through 24 for
tests 4 through 9, respectively. The maximum and the
averaged values of the magnitude (absolute value) of
discrepancies between the 1-D predictions and the experi-
mental measurement are summarized in Table IV. For the

Fig. 12. Comparison of empirical CDFs from MCMC samples and fitted CDFs of (a) a and (b) b for subcase I.

Fig. 13. Comparison of the 1-D thermal stratification prediction before and after the inverse UQ process with the experimental
data sets for test 1.

ENHANCING THE ONE-DIMENSIONAL SFR THERMAL STRATIFICATION MODEL · LU et al. 11

NUCLEAR TECHNOLOGY · VOLUME 00 · XXXX 2020



same reason as stated for subcase I, the resultant
1-D predictions for tests 4 through 7 had a trend that
was much more compatible with that of the experimental
data, and the magnitude of the discrepancies was largely
decreased. However, the improvement of the 1-D model
brought by the new thermal conductivity correlation
became less prominent in tests 8 and 9, when the imping-
ing jet mass flow rate became higher. This is because

with a large jet length, the ambient fluid at different axial
locations was directly cooled by the impinging jet, and its
temperature change through heat conduction became
minor.

The ratios of the turbulent Reτ to the Ri of the nine
test conditions are summarized in Table V together with
the ksf =kc ratios obtained through the inverse UQ process.
Because of the large difference of the Reτ=Ri ratios, tests

Fig. 14. Comparison of the 1-D thermal stratification prediction before and after the inverse UQ process with the experimental
data for test 2.

Fig. 15. Comparison of the 1-D thermal stratification prediction before and after the inverse UQ process with the experimental
data for test 3.
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1, 2, and 3 and tests 4 through 7 were classified into two
different mixing regimes. Both coefficients a and
b obtained for these two mixing regimes were different.

However, the classification of tests 8 and 9 were unclear
because of the minor impact of thermal conductivity on
temperature distribution in these two test conditions.

Besides the correlation for turbulence-enhanced
sodium thermal conductivity, the highly simplified jet
model employed in the initial 1-D model was another
source of deficiencies. For test conditions with no UIS
installed and with large impinging jet flow rates, includ-
ing tests 8 and 9, the new thermal conductivity correla-
tion had a minor impact on the 1-D predictions, whereas
a better jet model is expected to significantly improve the
performance of the 1-D thermal stratification model.

V. SUMMARY AND CONCLUSIONS

A fast-running 1-D system-level model was pre-
viously developed by our research group to predict the
thermal stratification phenomenon in the upper plenum of
a pool-type SFR (Refs. 11 and 12). The 1-D model had
reasonable performance, but nonnegligible discrepancies
between the 1-D predictions and the experimental tem-
perature measurements were observed.11 In this paper, we
first conducted a forward UQ study to the previously

TABLE III

Magnitude of the Maximum Prediction Error for Subcase I

Test Number

Maximum Error
Before Inverse UQ

(°C)
Maximum Error After

Inverse UQ (°C)
Average Error Before

Inverse UQ (°C)
Average Error After
Inverse UQ (°C)

1 21.0 12.0 5.0 2.5
2 20.0 13.5 4.5 2.0
3 9.5 8.5 2.0 1.5

Fig. 16. Trace plots for a and b for subcase II.

Fig. 17. Posteriors of (a) a and (b) b explored by MCMC samples and the fitted distributions for subcase II.
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developed 1-D thermal stratification model to identify the
uncertainty resources of the observed discrepancies
between the 1-D predictions and the experimental mea-
surements. Two key input parameters (jet temperature
and jet volumetric flow rate) and two thermal-hydraulic
system parameters (sodium heat capacity and thermal
conductivity) were considered in conjunction with the
coefficient C of the jet model. For both subcases inves-
tigated in this study (the ones with and without UIS
installed), the percentage change of the temperature of

interest caused by the uncertainties of inlet temperature
and inlet volumetric flow rate was more significant.
However, these uncertainties could not compensate for
the observed temperature discrepancies between the
1-D predictions and the experimental measurements. For
subcase II, the uncertainty of the coefficient C caused
much smaller uncertainty in the temperature of interest
compared to the jet temperature and the jet volumetric
flow rate. On the other hand, large changes would be
introduced by the turbulence-enhanced thermal

Fig. 18. Comparison of empirical CDFs from MCMC samples and fitted CDFs of (a) a and (b) b for subcase II.

Fig. 19. Comparison of the 1-D thermal stratification prediction before and after the inverse UQ process with the experimental
data for test 4.
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conductivity of sodium when the ambient flow is classi-
fied to different flow regimes and further impacts the
1-D prediction. This indicated that the correlation, devel-
oped by Shih et al. for the estimation ofksf , needed
modifications to be applicable to our 1-D thermal strati-
fication model. The coefficients and the boundaries of the
mixing regimes in this study were different from those of

Shih et al.’s correlation because we focused on the ambi-
ent fluid and considered the impinging jet as a heat
source in our 1-D thermal stratification model, while
Shih et al. established their correlation by treating the
impinging jet and the ambient fluid as a mixture.

We then proceeded to develop an improved corre-
lation to be used for the ksf estimation in the

Fig. 20. Comparison of the 1-D thermal stratification prediction before and after the inverse UQ process with the experimental
data for test 5.

Fig. 21. Comparison of the 1-D thermal stratification prediction before and after the inverse UQ process with the experimental
data for test 6.
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1-D thermal stratification model by using an efficient
data assimilation approach: the Bayesian-inference-
based inverse UQ process. We determined
a combination of the coefficients a and b for the
modeling of the turbulence-enhance sodium thermal
conductivity in both subcases to minimize the

discrepancies between the 1-D predictions and the
experimental measurements. We also quantified the
uncertainties associated with these two coefficients in
the same process. Among the nine experiments per-
formed, we used four of them for the inverse UQ
process and the other five for the validation.

Fig. 22. Comparison of the 1-D thermal stratification prediction before and after the inverse UQ process with the experimental
data for test 7.

Fig. 23. Comparison of the 1-D thermal stratification prediction before and after the inverse UQ process with the experimental
data for test 8.
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Fig. 24. Comparison of the 1-D thermal stratification prediction before and after the inverse UQ process with the experimental
data for test 9.

TABLE IV

Magnitude of the Maximum Prediction Error for Subcase II

Test Number

Maximum Error
Before Inverse UQ

(°C)
Maximum Error After

Inverse UQ (°C)
Average Error Before

Inverse UQ (°C)
Average Error After
Inverse UQ (°C)

4 23.0 15.0 8.0 6.0
5 11.5 7.0 3.0 2.0
6 28.0 19.0 6.5 4.5
7 7.0 3.5 2.5 1.5
8 16.5 16.5 8.5 8.0
9 10.0 10.0 5.5 5.0

TABLE V

Summary of Reτ=Ri Ratios and the Resultant ksf =kc Ratios

Test Number Reτ=Ri
Correlation for ksf =kc Ratio

Through Inverse UQ ksf =kc

1 4.55 8:1 Reτ
Ri

� �0:33 13.3
2 21.1 22.0
3 42.7 27.8
4 0.01 9:7 Reτ

Ri

� �0:13 5.0
5 0.06 6.7
6 0.04 6.3
7 0.10 7.2
8 0.76 9.3
9 1.41 10.1
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Based on the results of the inverse UQ process for
the enhanced model development, we extend the follow-
ing conclusions. The inverse UQ showed good capabil-
ity of determining the calibration parameters and
providing the associated uncertainties in the current
study. The 1-D thermal stratification model was substan-
tially improved by using the optimal posteriors of the
investigated coefficients determined through the inverse
UQ process. By using the coefficients a and
b determined through the inverse UQ process, the
1-D predictions for most of the test conditions showed
a trend that better matched the experimental data.
Moreover, the average discrepancy between the
1-D prediction and the experimental measurements was
reduced by 25% to 50% for the experiments with the
UIS installed, and by 25% to 33% for the experiments
with no UIS installed (except for tests 8 and 9). This
demonstrated the usefulness and the necessity of inves-
tigating these two parameters. However, the 1-D model
was not able to make predictions that perfectly matched
the experimental data, even for the test conditions used
for the inverse UQ process. This revealed the existence
of other missing or insufficient physics of the model.
Besides the correlation for turbulence-enhanced sodium
thermal conductivity, the highly simplified jet model
employed in the initial 1-D model could be another
source of deficiencies. For tests 8 and 9, conditions
with no UIS installed in the tank and large impinging
jet flow rates, the new thermal conductivity correlation
had a minor impact on the 1-D predictions. A better jet
model is expected to further improve the performance of
the 1-D thermal stratification model for these test con-
ditions, and will be the focus of our future research.
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