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Background and  Objective

• Nowadays research reactors are widely used in the world as 
important research or production facilities.

• The safety analysis for research reactors is paramount important as 
that for commercial power reactors.

• To better assess the transient modeling capability and understand 
the discrepancies observed in the simulations, sensitivity analysis 
and uncertainty quantification were needed in the safety analysis 
to provide best-estimated predictions.
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The NIST Conceptual Research Reactor Design

• Tank-in-pool type research reactor

• A heavy water tank immersed in a 
light water pool

• Beam-type research reactor as an 
advance neutron source facility

• 20 MW thermal power 

• 30-day operating cycle
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Horizontal Split Core Design

• 18 fuel element distributed to two 
splitted half cores

• Fueld with low enriched uranium 
(LEU) – U3Si2-Al 

• Cooled by forced downward
circulation

• Moderated by heavy water
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Modeling Codes Used in this Work

• PARET

• Relap5-3D
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• Developed by Argonne National Laboratory (ANL) for plate-type research reactor 
safety analyses. 

• Consists of a one-dimensional T/H model and a point-kinetics model
• Modular channel analysis code: unable to model complete cooling loops in the 

reactor 

• Developed by Idaho National Laboratory (INL) for for the analysis of transients and 
accidents in water-cooled nuclear power plants. 

• Multidimensional thermal hydraulics and neutron kinetic modeling capabilities.
• Able to model complete cooling loops in the reactor.



Computational Models for the Reactor Core

Boundary Conditions
• Time-dependent control  

volumes and junctions

Upper and bottom plenum
• Branch

Hydrodynamic channels
• Hot, average and bypass channel 
• Divided into 17 control volumes
• Reactor pool

Fuel element
• Heat structures 
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Uncertainty Quantification Procedure

• RAVEN: Risk Analysis Virtual 
Environment 

• Uncertainty quantification were 
carried out with RELAP5-3D 
coupled to the data analysis code 
RAVEN  
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Protected Loss of Flow Accident - Description
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• The flow rate reduction caused by the pump coastdown is assumed to follow an 
exponential function exp (-t/τ) , where τ is considered as the time constant of 
the flow rate decay. In this study, the time constant τ is set to be 1 s to mimic the 
fast PLOFA.

• During the LOF transients, the reactor SCRAM is tripped by a low coolant flow 
signal when the coolant flow reaches 85% of its nominal operation value.

• The safety control rods react to the trip signal with a time delay of 0.2 s. This 
short delay is considered to account for the reaction time needed by mechanical 
and electronic circuit operations.

• All reactivity feedback effects and period trip are neglected in the analyses



Steady-State Conditions
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Temperatures of hot (left) and average channel(right) in the steady-state

The steady-state results are compared against PARET results to verify the correctness of 
the modeling procedure and outcome. 



PLOFA Transient Results

Properties R5-3D PARET Deviation

1st PCT1 [°C] 100.25 104.57 4.13%

1st PCT time [s] 0.50 0.40 25.00%

1st PCoT2 [°C] 59.47 59.72 0.42%

1st PCoT time [s] 0.50 0.40 25.00%

2nd PCT [°C] 123.81 128.67 3.78%

2nd PCT time [s] 7.5 8.00 6.25%

2nd PCoT [°C] 108.77 106.76 1.88%

2nd PCoT time [s] 8.00 8.00 0.00%

1PCT = Peak cladding temperature
2PCoT = Peak coolant temperature
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Sensitivity and Uncertainty Analysis

Uncertain parameter Nominal value Uncertainty range Distribution

Inlet coolant Temp. [°C] 37 ±10% Normal

Inlet coolant mass flow rate [kg/s] 516.83 ±10% Normal

Reactor core power [MW] 20 ±10% Normal

• Figure of Merit (FOM): 
• Peak cladding temperature (PCT)  and Peak coolant temperature (PCoT)
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• Input Parameters of Interest: 



Sensitivity Analysis Results and Discussion

• Relative Sensitivities of Input Parameters at steady state 0 0
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Fig. 9: Sensitivity coefficients of PCT (left) and PCoT (right)



Uncertainty Analysis Results at Steady State

PCoT [ °C] PCT [°C]

Mean 54.25 90.17

Standard Dev. 14.88 10.67

95% Lower C.L. 53.32 89.51

95% Upper C.L. 55.18 90.84

Maximum 97.74 122.83

Peak Temperature Distribution Statistics
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Uncertainty Analysis Results for PLOFA
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Conclusions

• This work presents a sensitivity and uncertainty incorporated reactor 
safety analysis for research reactors under the framework of RELAP5-3D
and RAVEN. 

• A design basis protected LOF accident is used as a representative 
transient accident for this work. 

• The relative sensitivities obtained from the sensitivity analysis procedure 
reveals insights of different level influencing impacts of different input 
variables on the responses.

• The uncertainty analysis informs the deviations of the responses 
contributed by the errors of various input components.
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Thank you!

Questions?
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