

ANS Winter Meeting & Expo 2019 NUCLEAR TECHNOLOGY FOR THE U.S. AND THE WORLD

Thermal Stratification Analysis for Sodium-cooled Fast Reactors: Development of the 1-D System Model

Nov. 17-21, 2019 Washington DC

Cihang Lu

Postdoctoral researcher

Mechanical & Nuclear Engineering

Virginia Commonwealth University

Thermal stratification in nuclear systems

Thermal stratification

Formation of stratified layers of coolant with a large temperature gradient

- Nuclear systems involved
 - High-Temperature Gas-Cooled Reactors (HTGR)
 - Small-Modular Boiling-Water Reactors (SMBWR)

Pool-type Sodium-Cooled Fast Reactors (SFR)
…

- Concerns
 - Leads to neutronic and thermal-hydraulic instabilities
 - Causes thermal fatigue crack growth
 - Impedes natural circulation

Existing methodologies

➢ 0-D methods

System-analysis codes such as: RELAP5, SAS4A/SASSYS-1, DYN2B, CATHARE, ATHLET, Super-COPD, ...

Fast running

Poor predictions for the transients

➤ 2-D and 3-D methods

CFD codes such as: STAR-CCM+, STAR-CD, Fluent, CFX, AQUA, ...

Accurate predictions

Computationally expensive and time consuming

- ➤ 1-D methods
 - ✤ BMIX ++ (Zhao, 2003)

✤ 1-D scalar transport model (Wilson and Bindra, 2018)

To develop an advanced physics-based data-driven 1-D thermal stratification model, which can be implemented into system-analysis codes.

Project collaborators

Experimental setting and CFD calculation

Governing equations

(Potorson 1004)

$$A_{amb}(z) \frac{\partial \rho_{amb}}{\partial t} + \frac{\partial (\rho_{amb}Q_{amb})}{\partial z} = \sum_{k=1}^{N_{jet}} \rho_k Q'_k \ (conservation of mass)$$

$$(Peterson, 1994)$$

$$\frac{\partial P_{amb}}{\partial z} = -\rho_{amb}g \ (conservation of momentum)$$

$$A_{amb}(z) \frac{\partial (\rho_{amb}h_{amb})}{\partial t} + \frac{\partial (\rho_{amb}h_{amb}Q_{amb})}{\partial z} - A_{amb}(z) \frac{\partial}{\partial z} \left(k_{amb} \frac{\partial T_{amb}}{\partial z} \right) = \sum_{k=1}^{N_{jet}} \rho_k h_k Q'_k \ (conservation of energy)$$
By combining the mass and the energy equations
$$\rho_{amb}c_p \frac{\partial T_{amb}}{\partial t} + \rho_{sf}c_p \bar{u}_z \frac{\partial T_{amb}}{\partial z} - \frac{\partial}{\partial z} \left(k_{amb} \frac{\partial T_{amb}}{\partial z} \right) = \frac{1}{A_{amb}(z)} \sum_{k=1}^{N_{jet}} (\rho Q')_k \ (h_k - h_{amb})$$
By approximating $dh = c_p dT$ and $\Delta h = c_p \Delta T$ when $T_{jet} \approx T_{amb}$

$$\rho_{amb}c_p \frac{\partial T_{amb}}{\partial t} + \rho_{sf}c_p \bar{u}_z \frac{\partial T_{amb}}{\partial z} - \frac{\partial}{\partial z} \left(k_{amb} \frac{\partial T_{amb}}{\partial z} \right) = \frac{N_{jet}}{A_{amb}}c_{p,jet}\rho_{jet}Q'_{jet}(T_{jet} - T_{amb})$$

8

/A

Discretization

$$- \rho_{amb}c_p \frac{\partial T_{amb}}{\partial t} + \rho_{sf}c_p \bar{u}_z \frac{\partial T_{amb}}{\partial z} - \frac{\partial}{\partial z} \left(k_{amb} \frac{\partial T_{amb}}{\partial z} \right) = \frac{N_{jet}}{A_{amb}} c_{p,jet}\rho_{jet}Q'_{jet} \left(T_{jet} - T_{amb} \right)$$

- standard staggered scheme
- semi-implicit approach for the temporal derivative
- first-order upwind scheme for the first order spatial derivative
- second-order central difference scheme for the second order spatial derivative

$$\rho_{i}^{n}c_{p,i}^{n}\frac{T_{i}^{n+1}-T_{i}^{n}}{\Delta t_{n}} + \rho_{i}^{n}c_{p,i}^{n}\overline{u}_{z,i}^{n}\frac{T_{i}^{n+1}-T_{i-1}^{n+1}}{\Delta z_{i}} - \frac{2}{\Delta z_{i}}k_{i}^{n}\left[\frac{T_{i+1}^{n+1}-T_{i}^{n+1}}{\Delta z_{i+1}+\Delta z_{i}} - \frac{T_{i}^{n+1}-T_{i-1}^{n+1}}{\Delta z_{i}+\Delta z_{i-1}}\right] = \frac{N_{jet}}{A_{sf}}c_{p,jet}\rho_{jet}Q_{jet,i}'(T_{jet}-T_{i}^{n})$$

- \succ Initial condition: Uniform T_{sf}
- ▶ Neumann boundary conditions: $T_0 = T_1$ and $T_{N+1} = T_N$
- \succ Sensitivity analysis: Δt and Δz

Flow conditions considered

Flow conditions considered

 $T_{jet} < T_{amb}$ without UIS: model for Q'_{jet}

stopping force $F = F_D + F_g$

$$F_D = -C_D \rho_{sf} A_{jet} v_{jet}^2 \qquad F_g = -(\rho_{jet} - \rho_{sf}) V_{jet}$$

For a hypothetical cylindrical jet with a length L

$$\frac{dv_{jet}}{dt} = \frac{F_D + F_g}{\rho_{jet}A_{jet}L_{jet}} = -\left(\frac{C_D}{L_{jet}}\frac{v^2\rho_{sf}}{\rho_{jet}} + \frac{\rho_{jet} - \rho_{sf}}{\rho_{jet}}\right)$$
$$dv_{jet} = -\left[C\frac{v^2\rho_{sf}}{\rho_{jet}} + \frac{\rho_{jet} - \rho_{sf}}{\rho_{jet}}\right]dt$$

– only parameter to be determined

maximum height of the jet $\rightarrow Q'_{jet}$

 $T_{jet} < T_{amb}$ without UIS: training procedure

Validation

Comparison of model accuracy

	Test No.	Inlet T (°C)	Initial T (°C)	ΔT (°C)	Flow rate (gpm)	Max error 1D (°C)	
	1	200	250	-50	6	-21	
	2	200	250	-50	10	-20.5	With UIS
	3	200	225	-25	10	-9.6	
Validation	4	200	300	-100	1.5	-23	
Training	5	200	250	-50	3	-10.4	
	6	200	300	-100	3	-26.2	No UIS
Validation	7	200	250	-50	10	-7.8	
	8	200	300	-100	10	-12.1	

Summary and ...

- > 1-D system-level model for the prediction of the thermal stratification in the pool-type SFRs
- > Flow conditions considered: $T_{jet} < T_{amb}$
 - ✤ With UIS
 - Without UIS
- Performance of 1-D model ~ CFD calculation
- > Non-negligible discrepancies between predictions and measurement

Future work

> To improve the 1-D model by removing some approximations and assumptions

Acknowledgement

This project is supported by the Department of Energy Nuclear Energy University Programs (DOE-NEUP).

U.S. Department of Energy

References

- Zhao, H., 2003. Computation of mixing in large stably stratified enclosures. Ph.D. dissertation, University of California, Berkeley.
- Wilson, G. and Bindra, H., 2018. Thermal stratification and mixing in SFR plena using a onedimensional scalar transport model. American Nuclear Society 2018 winter meeting.
- Peterson, P. F., 1994. Scaling and analysis of mixing in large, stratified volumes. International Journal of Heat and Mass Transfer 37 (1), 97-106.

Backup slides

Flow conditions considered

 $T_{jet} > T_{amb}$:

Solution Time 0.5 (s)

Y X.Z

