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INTRODUCTION 

The step characteristic (SC) method is a well-
established robust (positivity preserving) spatial 
discretization scheme to solve the SN transport equation [1]. 
The convergence properties, in terms of accuracy and 
efficiency, of the SC method have been intensively studied 
in many literatures before [2-4].  

In general, SC is a 2nd order accurate scheme, and more 
accurate than the diamond difference (DD) method in weak 
and medium scattering problems. However, SC becomes 
less accurate for diffusive problems (the scattering ratio 
tends to 1).  Although it is well known that SC does not 
have the thick diffusion limit, a recent study by Wang 
shows that SC possesses the intermediate diffusion limit 
[6]. To improve the accuracy of SC for thick diffusive 
problems, Wang proposed a modification to the weighting 
factor of SC, which makes SC to attain the thick diffusion 
limit [6].  

In this paper, we carry out a detailed numerical study 
to demonstrate the accuracy of the modified SC scheme, 
which is called “mSC” herein. 

MODIFIED SC SCHEME (mSC) 

The monoenergetic SN equation in slab geometry with 
the assumption of isotropic scattering and constant external 
neutron source is written as  
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where 

𝜇" = neutron direction cosine with respect to 𝑥; 

𝜓" = angular flux;  

𝑤"0 = quadrature weights; 

Σ8 = total macroscopic cross section; 

Σ9 = macroscopic scattering cross section; 

𝑄 = constant external neutron source. 

The SC discretization of the SN equation on the one-
dimensional mesh (see Fig. 1) is given as follows. 

Fig. 1. One-dimensional mesh. 
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𝜏@ = Σ),@ℎ@, cell optical thickness;   (4) 

ℎ@ = mesh size of cell 𝑗.  (5) 

Take the S10 Gauss-Legendre quadrature set as an 
example. Fig. 2 shows the weighting factor 𝛼 as a function 
of the computational cell optical thickness 𝜏.  The SC tends 
to the 1st-order step difference (SD) scheme at 𝛼 = ±1. On 
the other hand, the SC becomes the 2nd-order DD scheme 
when 𝛼  limits to zero as 𝜏 → 0.   

Fig. 2. 𝛼 vs. 𝜏. 

Notice that the SC produces the exact solution if the 
problem becomes a pure absorbing one, i.e., Σ_ = 0. 
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To improve the accuracy of SC for thick and diffusive 
problems, we introduce the scaling term 1 − 𝑐a into the SC 
weighting factor as proposed in Ref. [6]: 
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where the exponential constant 𝛽 is a positive number 
larger than 1; we can take for example  𝛽 = 3. 𝑐@ ≡

,-,=
,S,@

,
which is the scattering ratio in cell 𝑗. 

As 𝑐 → 1, the 1 − 𝑐a term tends to zero, and thus 𝛼 →
0. As a result, the SC reverts to the DD scheme, and
therefore it is expected that it will attain the thick diffusion
limit as DD does. If the solution of a thick diffusive
problem contains abrupt changes or thin layers at the
boundary or in the interior, we can adjust the 1 − 𝑐a term
by introducing a smoothness indicator into Eq. (6), as
defined for the LF-WENO3 scheme [7]. However, it is not
needed for nondiffusive problems since the new scheme
will retain the robustness of the original SC method.

NUMERICAL DEMOSTRATION 

Our first problem is a simple one-group one-
dimensional (1-D) fixed source problem to numerically 
demonstrate the spatial accuracy of the new mSC scheme. 
The vacuum boundary is used for both sides of the slab. 
The Gauss–Legendre S12 quadrature set is used for angular 
discretization, and isotropic scattering is assumed. The size 
of the domain is 1cm, and it is uniformly divided into 10 
mesh cells. The macroscopic cross section,  Σ8 = 5 cmD5, 
and the scattering ratio is varied from 0 to 1. The external 
source 𝑄	 = 1	cmD5.	Note that the flux is dimensionless.  

For each scattering ratio, we compute the L1 errors of 
the numerical scalar flux with respect to the exact 
solutions. Fig. 3 shows the L1 errors for DD, SC, and mSC, 
respectively. 

Fig. 3. Scalar flux L1 error vs. scattering ratio. 

It is seen that the errors yielded from SC has a great 
dependence upon the scattering ratio, while the DD errors 

stay nearly insensitive to this parameter (slightly decrease 
when c becomes large). SC is more accurate than DD for 
the scattering ratio 𝑐 < 0.7, while it becomes increasingly 
worse after 𝑐 becomes larger than 0.7. Our new mSC 
scheme has significantly improved the accuracy of SC for 
larger scattering ratios, and overall it is much more 
accurate than DD and SC. 

The second problem is also a 1-D slab problem to 
demonstrate the property of positivity preserving 
(robustness). The domain size is 8 cm, and it is divided into 
80 uniform cells. As for problem 1, the Gauss–Legendre 
S12 quadrature set is used for angular discretization. In this 
problem, there is strongly absorbing region in the center 
and two more diffusive regions on the outside, resulting in 
the thin boundary and interior layers, as shown in Fig. 4. 

a. Cell-average flux.

b. Cell-edge flux.

Fig. 4. Positivity preserving. 

As expected, DD produces oscillatory and negative 
results (blue curve), whereas mSC performs as robustly as 
the original SC does. Notice that the cell-average flux of 
DD is less oscillatory than its cell-edge flux because the 
oscillation is largely cancelled out by arithmetically 
averaging both edge values of each computational cell.  
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The third problem is to demonstrate that mSC 
possesses the thick diffusion limit. The problem is also a 1-
D slab problem with the vacuum boundary on both sides of 
the domain. The specifications of the poblem are given as: 

L = 1, h = 0.1, 

Σ8 =
5
u
, Σ9 =

5
u
− 0.8ε,

𝑄	 = 	ε, 

where L is the slab thickness and h is the mesh size in 
dimension of cm. The dimension of Σ8 and Σ9 is cmD5. The 
problem becomes thick and diffusive as 𝜀 decreases.  

Two values of ε are considered for comparison. Figs. 
5a and 5b show the results for ε = 0.01 and 0.001, 
respectively. It clearly shows that mSC can attain the thick 
diffusion limit, but the original SC does not. The reason is 
that mSC tends to the DD scheme at the diffusion limit.  

If solutions contain both thick diffusive and 
nondiffusive regions, at the interface we can employ a 
smoothness indicator to adjust the 1 − 𝑐a term to improve 
the robustness of mSC. 

a. ε = 0.01.

b. ε = 0.001.

Fig. 5. Diffusion limit. 

CONCLUSIONS 

In this paper, we have presented a modified step 
characteristic method, called mSC, to improve the 
accuracy of the original SC scheme. The idea is that we 
have introduced a scaling factor, 1 − 𝑐a in the 𝛼 term of 
SC, to adjust the cell optical thickness. When the problem 
becomes more diffusive, namely 𝑐 → 1, the scaling factor 
will prevent the increase of cell optical thickness, and thus 
the weight factor 𝛼 won’t tend to ±1 with 𝑐, resulting in 
the SD method that is first order accurate and has no thick 
diffusion limit. The numerical results have demonstrated 
that the new mSC scheme can preserve great robustness of 
the original SC, and is much more accurate than SC and 
DD as well. More importantly it can attain the thick 
diffusion limit, which is of significant computational 
interest for thick diffusive problems such as radiative 
transfer. The study of its performance for 2-D and 3-D 
problems will be our future work. 
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