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ABSTRACT 

 
Recently we have proposed high order Lax–Friedrichs WENO (LF-WENO) fast sweeping 
methods for solving the SN neutron transport equation and demonstrated their superior 
performance in terms of accuracy, convergence, and positivity preserving property [1]. It was 
found in our previous work that LF-WENO3 can achieve better spatial convergence rate than 
the diamond difference (DD) method; however both methods do not attain their theoretical 
order of accuracy in spatial discretization because of lack of sufficient smoothness in the 
solution of the model problem tested. In the present paper, we further investigate the spatial 
convergence performance of LF-WENO3 for the SN solution based on the manufactured 
solutions. Numerical results are presented that show the expected third-order spatial 
convergence rate of LF-WENO3. In addition, we present in detail numerical analysis of the 
performance of LF-WENO3 for thick diffusive problems in comparison with the DD and step 
characteristic (SC) schemes.  

 
KEYWORDS: SN, LF-WENO, diffusion limit 
 
 
 

1. INTRODUCTION 
 
Fast sweeping methods are efficient iterative techniques originally developed to solve the steady state 
Hamilton-Jacobi equations and successfully applied for the hyperbolic conservation laws recently [2]. 
These fast sweeping methods achieve very fast convergence based on a Gauss–Seidel type nonlinear 
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iteration approach and the alternating direction sweeping by taking advantage of the transport information 
propagation property. The LF-WENO fast sweeping method was originally developed by Chen et al. [3].  
 
Recently we proposed the LF-WENO fast sweeping methods for solving the SN neutron transport equation 
and demonstrated their superior performance in terms of accuracy, convergence, and positivity preserving 
property [1].  In this paper, we extend our previous study of LF-WENO3 by comparing numerical results 
against manufactured solutions which possess arbitrary smoothness. It is well known that diffusion theory 
is an asymptotic limit of transport theory for physical systems in which the total cross section Σ" is large 
and the absorption cross section Σ# and source 𝑄 are small [4-8]. However, a numerical scheme for the SN 
transport equation does not necessarily possess the diffusion limit. Theoretical and numerical studies of 
various discretization schemes for the SN equation can be found in [9-13]. In this paper, we study the 
performance of LF-WENO3 for thick diffusive problems.  
 
 

2. HIGH ORDER LAX–FRIEDRICHS WENO FAST SWEEPING METHODS 
 
2.1. Two-Dimensional SN Neutron Transport Equation 
 
Note the details of the LF-WENO3 method for the SN transport equation have been published elsewhere 
[1]. For completeness, we recast them as follows. We consider the monoenergetic neutron transport fixed-
source problems on 2-D Cartesian geometry. 
 

𝜇 &
&'
𝜓(𝑥, 𝑦, 𝜇, 𝜂) + 𝜂 &

&0
𝜓(𝑥, 𝑦, 𝜇, 𝜂) + Σ"𝜓(𝑥, 𝑦, 𝜇, 𝜂) = 		

34
5
𝜙(𝑥, 𝑦) +	7

5
𝑄(𝑥, 𝑦) ,  (1a) 

 
where 𝜙 and 𝜓 are the scalar flux and angular flux, respectively, and 
 

𝜙(𝑥, 𝑦) = ∫𝜓(𝑥, 𝑦, 𝜇, 𝜂)𝑑𝜇 𝑑𝜂	,     (1b) 
  
Σ" and Σ: are the total cross section and scattering cross section,  𝜇 and 𝜂 are the neutron angular directions. 
𝑥 and 𝑦 are the spatial positions, and 𝑄 is the external neutron source. We assume isotropic scattering and 
neutron source.  
 
To simplify notation, we write Eq. (1a) in the conservative form as 
 

𝑓(𝜓)' + 𝑔(𝜓)0 + Σ"𝜓 = 𝑠(𝜓, 𝑥, 𝑦), (𝑥, 𝑦) ∈ [0, 𝑎] × [0, 𝑏] ,      (2)  
where, 
 𝑓(𝜓) = 𝜇𝜓 ,                 (3a) 
 

𝑔(𝜓) = 𝜂𝜓 ,                      (3b) 
 
𝑠(𝜓, 𝑥, 𝑦) = 34

5
𝜙(𝑥, 𝑦) +	7

5
𝑄(𝑥, 𝑦) .              (3c) 

 
Since the SN equation is the constant coefficient partial differential equation, the “flux” functions, 𝑓(𝜓) and 
𝑔(𝜓), are a linear function of 𝜓 . However, in many hyperbolic conservation equations such as flow 
transport equations they are nonlinear and therefore the solution could develop singularities or shocks.  
 
Let EF𝑥G, 𝑦HIJ, 𝑖 = 1,… ,𝑁', 𝑗 = 1,… ,𝑁0 denote the cell center points of a uniform discretization of the 
computational domain, with ∆𝑥 = 𝑎/𝑁'  and ∆𝑦 = 𝑏/𝑁0  as the mesh sizes for 𝑥  and 𝑦  direction, 

M&C 2019, Portland, OR, August 25-29, 2019 62



 

 

respectively. We use 𝜓G,H to represent the numerical solution of 𝜓 in the cell F𝑥G, 𝑦HI. A conservative finite 
difference discretization of Eq. (2) can be written as 
 

RS
TUVW,X

YRS
TZVW,X

∆'
+

[\
T,XUVW

Y[\
T,XZVW

∆0
+ Σ"𝜓G,H = 𝑠F𝜓G,H, 𝑥G, 𝑦HI ,             (4) 

 
in which 𝑓SG±VW,H

 and 𝑔\G,H±VW
 represent numerical flux approximations at ^𝑥G±VW

, 𝑦H_  and ^𝑥G, 𝑦H±VW
_ , 

respectively. Therefore, the accuracy order of the numerical method depends on the order of the numerical 
flux approximation of  𝑓(𝜓)'  and 𝑔(𝜓)0 . We will approximate them using high order Lax–Friedrichs 
WENO numerical fluxes. It is noted that 𝜓G,H is actually the average value over the cell for conservative 
schemes.  
 
2.2. Construction of High Order WENO Fluxes 
 
To develop a higher order sweeping method, one needs high order numerical fluxes in Eq. (4). In this 
section, we briefly review the construction of numerical fluxes for high order finite difference WENO 
schemes.  
 
The numerical flux 𝑓SG`VW,H

 (or 𝑔\G,H`7/a) is computed through the neighboring cell values   𝑓G,H = 𝑓F𝜓G,HI 

along the 𝑥 direction (or the 𝑦 direction). For a (2𝐾 − 1)th order WENO scheme, the 𝐾 numerical fluxes 
are computed as 
 

𝑓S
G`VW,H
(g) = ∑ 𝑐gj𝑓GYg`j,HkY7

jlm  , 𝑟 = 0,… , 𝐾 − 1 ,    (5) 

 
which corresponds to 𝐾 different candidate stencils 𝑆g(𝑖) = EF𝑥GYg, 𝑦HI, … , F𝑥GYg`kY7, 𝑦HIJ, 𝑟 = 0,… , 𝐾 −
1. Each of these numerical fluxes is 𝑘th order accurate. For example, it is the third order WENO scheme 
when 𝐾 = 2. The two second order accurate numerical fluxes for 𝜇 > 0 are given as 
 

𝑓S
G`VW,H
(m) = 7

a
𝑓G,H +

7
a
𝑓G`7,H ,      (6a) 

 
𝑓S
G`VW,H
(7) = − 7

a
𝑓GY7,H +

r
a
𝑓G,H .       (6b) 

 
The (2𝐾 − 1)th order WENO flux is a superposition of all these K numerical fluxes 
 

 𝑓SG`VW,H
= ∑ 𝑤jkY7

jlm 𝑓S
G`VW,H
(j)  .        (7) 

 
The nonlinear weights 𝑤j satisfy 𝑤j ≥ 0, ∑ 𝑤jkY7

jlm = 1, and are defined in the following way 
 

 𝑤j =
uv

∑ uvwZV
vxy

,  𝛼j =
{v

(|`}v)
 .               (8) 

 
Here 𝑑j  are the linear weights which yield the (2𝐾 − 1)th  order accuracy, 𝛽j  are the so-called 
“smoothness indicators” of the stencils 𝑆g(𝑖), which measure the smoothness of the function 𝑓(𝜓). The 
constant 𝜖 is a small positive number used to avoid the denominator to become zero and is typically taken 
as 10Y�.  
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For the third order WENO scheme (𝐾	 = 2), the linear weights are given by  
 

 𝑑m =
a
r
 ,  𝑑7 =

7
r
 ,      (9) 

 
and the smoothness indicators are given by 
 

 𝛽m = 𝜏mF𝑓G`7,H − 𝑓G,HI
a , 𝛽7 = 𝜏7F𝑓G,H − 𝑓GY7,HI

a ,            (10) 
 

where 
𝜏m = 𝑎 ∗ max	 �𝑎𝑏𝑠 �Σ"G`7,H − Σ"G,H� , 𝑎𝑏𝑠 �Σ:G`7,H − Σ:G,H�� ∆𝑥 ,                                  (11a) 

 
𝜏7 = 𝑏 ∗ max	 �𝑎𝑏𝑠 �Σ"G,H − Σ"GY7,H� , 𝑎𝑏𝑠 �Σ:G,H − Σ:GY7,H�� ∆𝑥	.                                   (11b) 

 
Note that the WENO3 method essentially becomes the third order upwind scheme when 𝛽m = 𝛽7 = 0. Here 
we introduce two additional parameters, 𝜏m  and 𝜏7 , to define local material (i.e., cross section) 
heterogeneity, which are multiplied with the original smoothness indicators. They are the differences of 
local neutron total cross sections or scattering cross section between the adjacent computational cells. The 
purpose is to recover the third order accuracy of WENO3 for smooth regions where 𝜏m = 𝜏7 = 0. The 
coefficients 𝑎 and 𝑏 are used to control the magnitude of the differences of cross sections to obtain the 
optimal accuracy, which can be determined based on numerical experiments.  When 𝜇 < 0 the right biased 
stencil with numerical values  𝑓G,H, 𝑓G`7,H and 𝑓G`a,H are used to construct a third order WENO approximation 
to the numerical flux 𝑓SG`VW,H

. Similar procedures are used for the 𝑦 direction 𝑔(𝜓)0. 

 
2.3. Lax-Friedrichs Sweeping Framework 
 
As proposed in [3], here we use Lax–Friedrichs WENO fluxes to obtain the high order sweeping method. 
First, we define 
 

 𝑓SSG`VW,H
= 𝑓SG`VW,H

+ ��
a
F𝜓G`7,H − 𝜓G,HI,  𝑖 = 1,… ,𝑁' ,       (12a) 

 
 𝑔\�G,H`VW

= 𝑔\G,H`VW
+ ��

a
F𝜓G,H`7 − 𝜓G,HI,  𝑗 = 1,… ,𝑁0 ,      (12b) 

 
where 𝑓SG`VW,H

 and 𝑔\G,H`VW
 are the high order WENO flux in the 𝑥  and 𝑦  directions, respectively. The 

relaxation factor, 𝜎, can be adjusted to improve the convergence rate. It is found that a number less than 
1.0 can speed up the convergence. However, the scheme would become unstable and fail to converge if it 
is too small.  Then we have 
 

 𝑓SG`VW,H
= 𝑓SSG`VW,H

− ��
a
F𝜓G`7,H − 𝜓G,HI,  𝑖 = 1,… ,𝑁' ,                  (13a) 

 
 𝑔\G,H`VW

= 𝑔\�G,H`VW
− ��

a
F𝜓G,H`7 − 𝜓G,HI,  𝑗 = 1,… ,𝑁0 .                  (13b) 
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The above formulae mimic the first order Lax-Friedrichs formulation, which allows us to develop the 
iterative scheme. The discretization formula Eq. (4) then can be rewritten, in terms of 𝑓SSG`VW,H

 and 𝑔\�G,H`VW
, as 

 
RSS
TUVW,X

Y��W F�TUV,XY�T,XIYR
SS
TZVW,X

`��W F�T,XY�TZV,XI

∆'
+

[\�
T,XUVW

Y��W F�T,XUVY�T,XIY[\
�
T,XZVW

`��W F�T,XY�T,XZVI

∆0
+ Σ"𝜓G,H =  

𝑠F𝜓G,H, 𝑥G, 𝑦HI .                                                               (14) 
 
We have 
 

𝜓G,H = 
:F�T,X,'T,0XI∆'∆0Y�RSSTUVW,X

YRSS
TZVW,X

Y��W F�TUV,X`�TZV,XI�∆0Y�[\
�
T,XUVW

Y[\�
T,XZVW

Y��W F�T,XUV`�T,XZVI�∆'

�(�∆0`�∆')`3�∆'∆0
   

=
:F�T,X,'T,0XI∆'Y�RSSTUVW,X

YRSS
TZVW,X

Y��W F�TUV,X`�TZV,XI�Y�[\
�
T,XUVW

Y[\�
T,XZVW

Y��W F�T,XUV`�T,XZVI��
∆�
∆��

���`��∆�∆���`3�∆'
    (15) 

 
We sweep the whole domain with the following four alternating orderings repeatedly. However, they can 
be solved in any order since the orderings are independent.   

 
I. 𝑖 = 1:𝑁' , 𝑗 = 1:𝑁0 for 𝜇 > 0 and 𝜂 > 0 
II. 𝑖 = 𝑁': 1 , 𝑗 = 1:𝑁0 for 𝜇 < 0 and 𝜂 > 0 
III. 𝑖 = 1:𝑁' , 𝑗 = 𝑁0: 1 for 𝜇 > 0 and 𝜂 < 0 
IV. 𝑖 = 𝑁': 1 , 𝑗 = 𝑁0: 1 for 𝜇 < 0 and 𝜂 < 0 

 
If the first sweeping direction is chosen, then 𝜓GY7,H = 𝜓GY7,H�`7 , 𝜓G,HY7 = 𝜓G,HY7�`7 , 𝜓G`7,H = 𝜓G`7,H� , and 
𝜓G,H`7 = 𝜓G,H`7� . Thus, we obtain the Gauss–Seidel iterative scheme 

 
𝜓G,H�`7 =		

:�F�T,X,'T,0XI∆'Y�RSSTUVW,X
∗ YRSS

TZVW,X
∗ Y��W ��TUV,X

� `�TZV,X
�UV ��Y�[\�

T,XUVW

∗ Y[\�
T,XZVW

∗ Y��W ��T,XUV
� `�T,XZV

�UV ���∆�∆��

���`��∆�∆���`3�∆'
 .    (16) 

 
Similar to the DD method, we follow the neutron characteristics and sweep through the grids with 
alternating directions and use the most recent flux values as we update the solution, in which 𝑓SS∗ and  𝑔\�∗ 
are also calculated using the newly updated flux values if available. The implementation of the LF-WENO3 
method is very simple and straightforward, in particularly on a two-dimensional Cartesian mesh.  Since the 
WENO3 stencil involves two upwind cells in each direction, the cell values near the boundary have to be 
carefully computed to avoid the reduction in the global accuracy. In our implementation of LF-WENO, for 
simplicity the DD method has been used for the boundary cells. 
 
 

3. NUMERICAL RESULTS 
 
3.1.  Spatial Discretization Convergence 
 
In [1], we investigated  the spatial convergence of the LF-WENO3 method based on a simple 1-D slab 
problem and a 2-D homogeneous fixed-source neutron transport problem. It was found that for the 2-D 
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model problem LF-WENO3 could only attain the second-order accuracy, while DD could only have the 
accuracy much less than second order due to lack of sufficient smoothness of the model problem.  
 
In this paper, we use the method of manufactured solutions (MMS) to assess the convergence property of 
LF-WENO3. With MMS, we can have the desired order of smoothness of the solution and therefore a full 
convergence rate can be achieved. The spatial domain is given by the square [0,2] × [0,2]  with the 
dimension in cm. The manufactured solution chosen is given by: 
 

𝜓(𝑥, 𝑦, 𝜇j, 𝜂j) = 𝑥r𝑦r(2 − 𝑥)r(2 − 𝑦)r.        (17) 
 
This manufactured solution has several desirable properties: a) it is infinitely differentiable (and isotropic), 
and therefore a spatial scheme can exhibit its full convergence rate; b) it is equal to zero on the domain 
boundaries, and so a natural vacuum boundary condition can be used; and c) the cubic power functions in 
x and y decrease rapidly to zero at the domain boundary as shown in Figure 1. This helps mitigate the 
boundary effects on the global accuracy of the DD approximation used for the boundary cells in LF-
WENO3. The source term (which is now anisotropic), can then be calculated in each direction as follows: 

 

𝑄j(𝑥, 𝑦) = 4 �
(24𝑥a − 48𝑥r + 30𝑥5 − 6𝑥 )𝑦r(2 − 𝑦)r𝜇j

+𝑥r(2 − 𝑥)r(24𝑦a − 48𝑦r + 30𝑦5 − 6𝑦 )𝜂j + Σ"𝑥r𝑦r(2 − 𝑥)r(2 − 𝑦)r
� 

−Σ:𝜙(𝑥, 𝑦) ,                               (18) 
 
where 

𝜙(𝑥, 𝑦) = ∑ 𝑤j𝜓(𝑥, 𝑦, 𝜇j, 𝜂j)¡
jl7  .                                                                              (19) 

 
Since the angular flux is isotropic, we have 
 

 𝜙(𝑥, 𝑦) = ∑ 𝑤j𝜓(𝑥, 𝑦, 𝜇j, 𝜂j)¡
jl7 = 𝜓(𝑥, 𝑦, 𝜇j, 𝜂j)∑ 𝑤j¡

jl7 = 4𝜓(𝑥, 𝑦, 𝜇j, 𝜂j) ,          (20) 

 

𝑄j(𝑥, 𝑦) = 4 �
(24𝑥a − 48𝑥r + 30𝑥5 − 6𝑥 )𝑦r(2 − 𝑦)r𝜇j
+𝑥r(2 − 𝑥)r(24𝑦a − 48𝑦r + 30𝑦5 − 6𝑦 )𝜂j

� − Σ#𝜙(𝑥, 𝑦) .               (21) 

 
Figure 1. Manufactured Scalar Flux. 
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In this study, numerical solutions are obtained using the level-symmetric S12 quadrature set for angular 
discretization. The cell-average source for the numerical solution is obtained by averaging 𝑄(𝑥, 𝑦) on each 
computational cell. The macroscopic total cross section Σ¢ = 1cmY7, and the scattering cross section Σ¤ =
0.6cmY7. The neutron scattering source is assumed isotropic. 
 
The flux L1 error as a function of mesh size is shown in Figure 2. With the manufactured solution, LF-
WENO3 can achieve almost third-order convergence, ~𝑂(ℎa.©). A slight loss of accuracy is due to the 
second-order DD discretization used for the boundary cells. In addition, the error is relatively large with 
respect to the DD results on the coarse meshes (e.g., ℎ	 = 	0.2 and 0.1cm) because the boundary cells have 
much larger errors than the interior ones. A higher-order approximation for the boundary cells should help 
improve the global accuracy of LF-WENO3. DD displays the second-order accuracy.  

 
 

Figure 2. Flux L1 Error. 
 
 
3.2.  Thick Diffusive Problems 
 
The above study shows that the discretization error of LF-WENO3 tends to zero as the mesh size goes to 
zero. This can be also verified by local truncation error analysis. Therefore, LF-WNEO3 possesses high 
accuracy for neutron transport problems which are typically in the optically thin regime. However, for 
thermal radiation transport problems, they are optically much thicker than neutron transport problems. In 
this section, we investigate the performance of LF-WENO3 for such thick diffusive problems based on 
three model problems.   
 
The first problem is a homogeneous slab problem with the vacuum boundary on both sides. The numerical 
solutions are obtained using DD, SC, and LF-WENO, respectively. The Gauss–Legendre S12 quadrature set 
is used for angular discretization. The specifications of the problem are given as:  
 

L = 1,  h = 0.1, 

Σ¢ =
7
«
,  Σ¤ =

7
«
− 0.8ε, 

𝑄	 = 	ε, 

y	=	0.64x2.01

y	=	7.75x2.88

1.0E-05

1.0E-04

1.0E-03

1.0E-02

0.01 0.1

Fl
ux
	L
1	
Er
ro
r

Mesh	Size	(cm)

DD LF-WENO3

2 x 2-cm square 
Vacuum BC 
Σ"  = 1 cmY7 
c = 0.6 
Q = 1 cmYa 
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where L is the slab thickness and h is the mesh size in dimension of cm. The dimension of Σ¢ and Σ¤ is 
cmY7. The problem becomes thick and diffusive as 𝜀 decreases, and its asymptotic solution is the same as 
the solution of a diffusion equation [9]: − {

{'
7
r3®

{
{'
𝜙 + Σ¯𝜙 = 𝑄  with Σ¢ = 1cmY7 , Σ¯ = 0.8cmY7and 

𝑄 = 1cmYa. Note that the diffusion length, 7
°r3®3±

≈ 0.65cm, is independent of 𝜀. The results for various 

values of  𝜀 are shown in Figure 3. Note that Figure 3d depicts the scalar fluxes calculated on a finer mesh 
of ℎ	 = 	0.05cm for 𝜀 = 0.001. 
 

   
(a) 𝛆 = 𝟎. 𝟏.                                                          (b)  𝛆 = 𝟎. 𝟎𝟏. 

   
                                (c)  𝛆 = 𝟎. 𝟎𝟎𝟏.                                       (d)  𝛆 = 𝟎. 𝟎𝟎𝟏 and 𝐡	 = 𝟎. 𝟎𝟓.   

 
Figure 3. 1-D Homogenous Problem. 

 
The second problem is an inhomogeneous slab problem with the vacuum boundary. The Gauss–Legendre 
S12 quadrature set is used for angular discretization. The problem is defined by:  
 

L = 20,  h = 0.2, 

Σ¢ = ¹
1,												0 < 𝑥 < 5			
100,							5 < 𝑥 < 10
100,					10 < 𝑥 < 20

 , Σ¤ = ¹
0,																																																				0 < 𝑥 < 5			
90,																																																	5 < 𝑥 < 10
99; 		99.99; 		99.999; 	100,				10 < 𝑥 < 20

 , 
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Q = ¹
0,													0 < 𝑥 < 5		
10,											5 < 𝑥 < 10
0,											10 < 𝑥 < 20

 , 

 
The slab consists of three regions: the left region 0 < 𝑥 < 5 is optically thin region without scattering; the 
middle region 5 < 𝑥 < 10 is a thick region with the optical thickness of 20 MFPs; and the right region 
10 < 𝑥 < 20 is a thick and diffusive region where the cell optical thickness is 20 MFPs and the scattering 
ratio c varies from 0.99 to 1. A constant neutron source is given in the middle region. The results are shown 
in Figure 4.  
 

     
(a) c = 0.99.                                                            (b) c = 0.9999. 

     
                                (c) = 0.99999.                                                            (d) c = 1. 

Figure 4. 1-D Inhomogeneous Problem. 
 

The third problem is a 2-D square problem with the vacuum boundary on each side. The angular flux is 
defined by the manufactured solution of Eq. (17). The numerical solutions are obtained using the level-
symmetric S12 quadrature set for angular discretization. The cell-average source for the numerical solution 
is obtained by averaging 𝑄(𝑥, 𝑦) on each computational cell. The problem specifications are given as 
follows:  

L × L = 2 × 2,  h' = h0 = 0.1, 

Σ¢ = 1000 ,  Σ¤ = 999; 	999.9; 	999.99 , 
 

The problem is a very thick and diffusive problem with the cell optical thickness of 100 MFPs and the 
scattering ratio of 0.999–0.99999. The DD and LF-WENO3 calculated scalar fluxes for three scattering 
ratios are shown in Figure 5.  
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(a) c = 0.999. 

 
 

 
(b) c = 0.9999. 

 

 
(c) c = 0.99999. 

 
Figure 5. 2-D Problem (𝒙 and 𝒚 denote cell number index). 
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From the above numerical results, we have the following observations: 

a) As the optical thickness of the computational cells tends to infinite, the SC scheme becomes the 
first-order step upwind method, which is stable but has excessive numerical diffusion. SC fails for 
thick diffusive problems [9].  

b) As reported in the previous research [10], DD possesses the thick diffusion limit for isotropic 
incident boundary fluxes for 1-D and 2-D problems as shown in Figures 3 and 5. However, Figure 
4 shows that DD solutions (both cell-average and cell-edge fluxes) become corrupted by 
unphysically oscillations in the presence of anisotropic boundary fluxes (where the boundary layer 
could develop). This is a typical issue for central difference based schemes due to lack of numerical 
diffusion. 

c) In general, LF-WENO3 does not possess the thick diffusion limit. Figure 3 shows that the accuracy 
of LF-WENO3 deteriorates as the problem becomes increasingly thick and diffusive. However, we 
can improve the accuracy by using a fine mesh with respect to the diffusion length (1/°3Σ¢Σ¯) of 
the problem. For example, Figure 3d shows that the accuracy can be improved significantly when 
the finer mesh (ℎ	 = 	0.05cm) is used for the case of  𝜀 = 0.001. The MFP of this case is only 
0.001cm, but the diffusion length is about 0.65cm. Therefore, LF-WENO3 can attain very high 
accuracy on a very coarse mesh compared to MFP for thick diffusive problems as long as the mesh 
is fine enough in terms of the diffusion length. In addition, it should be noted that LF-WENO3 can 
use a relatively coarse mesh in terms of the diffusion length without loss of accuracy if the problem 
is thick but not too diffusive (e.g.,  c	 > 	0.99 ). Numerical results show that LF-WENO3 
approximately achieves the diffusion limit on the mesh size, 𝜀¿ℎ, where 𝑙 = 1/3, i.e., between the 
thick (𝑙 = 0) and intermediate (𝑙 = 1) diffusion regimes [9]. A asymptotic analysis will be carried 
out to verify this observation in the future. 

d) The third problem is an interesting case, in which the flux is the fixed manufactured solution. When 
varying the scattering ratio, the source term has to be changed accordingly to maintain the same 
manufactured flux. The numerical solution of LF-WENO3 becomes worse as the scattering ratio 
increases (i.e., the problem becomes increasingly diffusive), although the diffusion length becomes 
relatively larger than the fixed mesh size. The diffusion length is 0.0183cm for the case “c = 0.999”, 
and 0.183cm for the case “c = 0.99999 ”. It is found that the accuracy can be improved significantly 
when using a finer mesh for the case “c = 0.9999 ”. However, the deterioration does not happen 
with DD for this case, which indicates that DD possesses the thick diffusion limit, although the 
source is significantly non-uniform and non-isotropic. Further research is needed to study the 
property of LF-WENO3 for problems with a nonuniform and anisotropic source.  

e) In addition, Figure 4 shows that LF-WENO3 is much more stable than DD for inhomogeneous 
problems because LF-WENO3 has superior positivity preserving as demonstrated in [1].    

 
 

4. CONCLUSIONS 
 
In this paper, we have presented the study of the spatial convergence rate of LF-WENO3 for the SN solution 
based on the manufactured solution. It has been confirmed that LF-WENO3 can achieve the third-order 
spatial accuracy for sufficiently smooth problems. The performance of LF-WENO3 for thick diffusive 
problems has been demonstrated based on the three model problems. In general, LF-WENO3 does not have 
the thick diffusion limit. However, our numerical results have indicated that LF-WENO3 can attain the 
diffusion limit on a mesh of 𝜀7/rℎ, which is much coarser than the mesh for the intermediate regime (𝜀ℎ),  
whereas slightly finer than that for the thick diffusion regime (ℎ). An asymptotic analysis will be carried 
out to verify this observation in the future. Nevertheless, LF-WENO3 is a highly accurate and robust scheme 
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which can be applied to thick diffusive problems if the mesh size is sufficiently fine in terms of the diffusion 
length or the problem is not extremely diffusive.   
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