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Introduction
• Sensitivity analysis investigates the variation of the 

outputs of a system to changes in the input parameters
• Most commonly used formulations for sensitivity analysis 

limit in the first-order approximation
• Higher order accurate sensitivities are desirable in many 

applications
• Complex-step Derivative method (CDM) can be used to 

compute higher order accurate sensitivities 
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Sensitivity Analysis
• Express a general function of interest as )𝑓𝑓(𝑥𝑥,𝑄𝑄(𝑥𝑥) , 

where 𝑥𝑥 is the parameter and 𝑄𝑄(𝑥𝑥) is the state variable. 
• Forward Sensitivity Analysis Procedure (FSAP)

𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑄𝑄

𝑇𝑇 𝜕𝜕𝑄𝑄
𝜕𝜕𝑥𝑥

• Adjoint Sensitivity Analysis Procedure (ASAP)
𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

− 𝜆𝜆𝑓𝑓𝑇𝑇
𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥

where 𝑅𝑅 is the state equation and 𝜆𝜆𝑓𝑓𝑇𝑇 is adjoint vector.
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Derivative Calculations
• For either FSAP or ASAP, the essential task in sensitivity 

analysis is to obtain sensitivity derivatives.
• Finite Difference Method (FDM)

𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥 FDM

≈
)𝑓𝑓(𝑥𝑥 + ℎ) − 𝑓𝑓(𝑥𝑥

ℎ

• Taylor series analysis informs FDM only has the first-order
accuracy:

𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

=
)𝑓𝑓(𝑥𝑥 + ℎ) − 𝑓𝑓(𝑥𝑥

ℎ
−
ℎ
2
𝑑𝑑2𝑓𝑓
𝑑𝑑𝑥𝑥2

+ 𝑜𝑜(ℎ)
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Complex-step Derivative Method (CDM)

• To introduce CDM, performing the Taylor series 
expansion to a function of complex variable as follows

𝑓𝑓(𝑥𝑥 + 𝑖𝑖ℎ) = 𝑓𝑓(𝑥𝑥) + 𝑖𝑖ℎ
𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

−
ℎ2

2
𝑑𝑑2𝑓𝑓
𝑑𝑑𝑥𝑥2

− 𝑖𝑖
ℎ3

3!
𝑑𝑑3𝑓𝑓
𝑑𝑑𝑥𝑥3

+ 𝑜𝑜(ℎ3)

• Take the imaginary part of the equation

Im )𝑓𝑓(𝑥𝑥 + 𝑖𝑖ℎ = ℎ
𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

−
ℎ3

3!
𝑑𝑑3𝑓𝑓
𝑑𝑑𝑥𝑥3

+ 𝑜𝑜(ℎ3)

• This gives the CDM derivative estimation
𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥 CDM

=
Im )𝑓𝑓(𝑥𝑥 + 𝑖𝑖ℎ

ℎ
+
ℎ2

3!
𝑑𝑑3𝑓𝑓
𝑑𝑑𝑥𝑥3

+ 𝑜𝑜(ℎ2)
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A Simple Example

The partial derivatives estimated for 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 3𝑥𝑥3 + 4𝑥𝑥5𝑦𝑦3 at x = 3, y =1.5.

Subject to 
cancellation 

errors

Bounded by 
the first-order 

accuracy
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Nested Iterative Hierarchy for k-eigenvalue Solver

Start of program
Begin of the power iteration (PI)

Loop on the energy group g
Begin of source iteration (SI)

Transport sweep (loop on each direction and each spatial variable)
DSA acceleration if needed
Check SI convergence to decide exit or update and continue

End of SI 
End of the energy group loop
Check PI convergence to decide exit or update and continue

End of the PI
End of program
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Challenges of CDM in k-eig Sensitivity Application

• Standard computational approaches to solve the 
neutron transport equation involve a sophisticated 
nestled iteration paradigm due to the inherent 
complexity of the equation

• Likely due to this reason, the existing transport solver is 
not compatible with complex inputs

• Special treatment must be exercised in the transport 
solver to apply complex variable method
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CDM Implementation in k-eig Transport Problem

• Consider one-group one-dimensional k-eig neutron transport problem with an isotropic 
scattering source and homogeneous materials

𝜇𝜇 )𝜕𝜕𝜓𝜓(𝑥𝑥,𝜇𝜇
𝜕𝜕𝑥𝑥

+ 𝛴𝛴𝑡𝑡𝜓𝜓(𝑥𝑥, 𝜇𝜇) = 1
2
𝛴𝛴𝑠𝑠𝜙𝜙(𝑥𝑥) + 1

2
𝑆𝑆𝑓𝑓
𝑘𝑘

where   𝑆𝑆𝑓𝑓 = 𝜈𝜈𝛴𝛴𝑓𝑓𝜙𝜙(𝑥𝑥).

• With an arbitrary perturbation to the fission cross section �𝛴𝛴′𝑓𝑓 = 𝛴𝛴𝑓𝑓(1 + ℎ , for example, the 
FDM based k-eig sensitivity can be estimated

𝛴𝛴𝑓𝑓
𝑘𝑘
𝜕𝜕𝑘𝑘
𝜕𝜕𝛴𝛴𝑓𝑓 FDM

=
𝛴𝛴𝑓𝑓
𝑘𝑘
𝑘𝑘𝑝𝑝 − 𝑘𝑘
𝛥𝛥𝛴𝛴𝑓𝑓

=
𝑘𝑘𝑝𝑝 − 𝑘𝑘
𝑘𝑘 ⋅ ℎ

• To enable the CDM derivative evaluation in the transport solver, we consider the following 
quantities consisting of both real and imaginary parts of the solution space

𝜓𝜓 = 𝜓𝜓𝑟𝑟 + 𝜓𝜓𝑖𝑖𝑖𝑖, 𝜙𝜙 = 𝜙𝜙𝑟𝑟 + 𝜙𝜙𝑖𝑖𝑖𝑖
𝛴𝛴𝑡𝑡 = 𝛴𝛴𝑡𝑡,𝑟𝑟 + 𝛴𝛴𝑡𝑡,𝑖𝑖𝑖𝑖, 𝛴𝛴𝑠𝑠= 𝛴𝛴𝑠𝑠,𝑟𝑟 + 𝛴𝛴𝑠𝑠,𝑖𝑖𝑖𝑖
𝜈𝜈𝛴𝛴𝑓𝑓 = 𝜈𝜈𝛴𝛴𝑓𝑓,𝑟𝑟 + 𝜈𝜈𝛴𝛴𝑓𝑓,𝑖𝑖𝑖𝑖, 𝑆𝑆𝑓𝑓= 𝑆𝑆𝑓𝑓,𝑟𝑟 + 𝑆𝑆𝑓𝑓,𝑖𝑖𝑖𝑖

𝑘𝑘 = 𝑘𝑘𝑟𝑟 + 𝑘𝑘𝑖𝑖𝑖𝑖
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CDM Implementation (cont.)
• Substitute these assumptions into the transport equation, with some arrangements, 

we arrive at a set of two coupled transport equations counting the real and imaginary 
portion of the original equation, respectively:

where                                                                       and

• The CDM based k-eig sensitivity is thus evaluated by

where  𝛴𝛴𝑓𝑓ℎ = 𝛴𝛴𝑓𝑓,𝑖𝑖 .

𝜇𝜇
𝜕𝜕𝜓𝜓𝑟𝑟
𝜕𝜕𝑥𝑥 + 𝛴𝛴𝑡𝑡,𝑟𝑟𝜓𝜓𝑟𝑟 − 𝛴𝛴𝑡𝑡,𝑖𝑖𝜓𝜓𝑖𝑖 =

1
2 𝛴𝛴𝑠𝑠,𝑟𝑟𝜙𝜙𝑟𝑟 − 𝛴𝛴𝑠𝑠,𝑖𝑖𝜙𝜙𝑖𝑖 + 𝑄𝑄𝑓𝑓,𝑟𝑟

𝜇𝜇
𝜕𝜕𝜓𝜓𝑖𝑖
𝜕𝜕𝑥𝑥 + 𝛴𝛴𝑡𝑡,𝑟𝑟𝜓𝜓𝑖𝑖 + 𝛴𝛴𝑡𝑡,𝑖𝑖𝜓𝜓𝑟𝑟 =

1
2 𝛴𝛴𝑠𝑠,𝑟𝑟𝜙𝜙𝑖𝑖 + 𝛴𝛴𝑠𝑠,𝑖𝑖𝜙𝜙𝑟𝑟 + 𝑄𝑄𝑓𝑓,𝑖𝑖

𝑄𝑄𝑓𝑓,𝑟𝑟 =
⁄1 2

𝑘𝑘𝑟𝑟2 +𝑘𝑘𝑖𝑖 2 𝑘𝑘𝑟𝑟𝑆𝑆𝑓𝑓,𝑟𝑟 + 𝑘𝑘𝑖𝑖𝑆𝑆𝑓𝑓,𝑖𝑖

𝑄𝑄𝑓𝑓,𝑖𝑖 =
⁄1 2

𝑘𝑘𝑟𝑟2 + 𝑘𝑘𝑖𝑖2 𝑘𝑘𝑟𝑟𝑆𝑆𝑓𝑓,𝑖𝑖 − 𝑘𝑘𝑖𝑖𝑆𝑆𝑓𝑓,𝑟𝑟

𝑆𝑆𝑓𝑓,𝑟𝑟 = 𝜈𝜈𝛴𝛴𝑓𝑓,𝑟𝑟𝜙𝜙𝑟𝑟 − 𝜈𝜈𝛴𝛴𝑓𝑓,𝑖𝑖𝜙𝜙𝑖𝑖
𝑆𝑆𝑓𝑓,𝑖𝑖 = 𝜈𝜈𝛴𝛴𝑓𝑓,𝑟𝑟𝜙𝜙𝑖𝑖 + 𝜈𝜈𝛴𝛴𝑓𝑓,𝑖𝑖𝜙𝜙𝑟𝑟

𝛴𝛴𝑓𝑓
𝑘𝑘
𝜕𝜕𝑘𝑘
𝜕𝜕𝛴𝛴𝑓𝑓 CDM

=
𝛴𝛴𝑓𝑓
𝑘𝑘

𝑘𝑘𝑖𝑖
𝛴𝛴𝑓𝑓 ⋅ ℎ

=
𝑘𝑘𝑖𝑖
𝑘𝑘 ⋅ ℎ
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Numerical Example
• Problem: a three-region k-eigenvalue problem.

• Vacuum boundary applies to both sides of the slab. 

• The reference k-eigenvalue for the problem is 1.38478.

Region 1 Region 2 Region 3
𝛴𝛴𝑡𝑡 [cm-1] 0.2 0.75 0.3
𝛴𝛴𝒔𝒔 [cm-1] 0.15 0.01 0.2
𝜈𝜈𝛴𝛴𝑓𝑓 [cm-1] 0.1 0.8 0.2

x [cm] 0 ≤ 𝑥𝑥 < 4 4 ≤ 𝑥𝑥 < 12 12 ≤ 𝑥𝑥 ≤ 16
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Some Numerical Details
• The 1G 1D transport equation was numerically solved by the 

discrete ordinate method (i.e., SN method)
• Standard diamond difference scheme for the spatial 

discretization
• Source iteration for the flux convergence and power iteration for 

the k-eigenvalue convergence
• S6 Gauss-Legendre quadrature set and uniformly small mesh size 

0.2 cm were used to minimize the numerical truncation errors 
due to angular and spatial discretizations, respectively
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Results

Comparison of k-eig derivative to the total cross section (left) and fission 
cross section (right) with the FDM and CDM
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Summary and Future Work
• The complex-step derivative method (CDM) is developed and applied 

in neutron transport models to calculate the k-eig sensitivity with 
respect to nuclear cross-section. 

• The feasibility of the CDM method is demonstrated with a 1G 1D slab 
k-eig problem. The higher order accuracy of the derivative estimation 
by CDM is achieved by comparing the result to the first-order finite 
difference method (FDM). 

• Future work will be extending the method to more practical 
applications (e.g., MG MD heterogeneous problem), and 
demonstrate the advantages of CDM in adjoint sensitivity analysis, as 
well as handing  non-linear effects in the sensitivities.
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Thanks for your time

Questions?
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