

Comparing the Steady State System Modeling Results of the Conceptual NIST Reactor with ANL-PARET and RELAP5-3D

Tao Liu and Zeyun Wu

Department of Mechanical and Nuclear Engineering Virginia Commonwealth University, Richmond, Virginia

Present at ANS Student Conference, Richmond, VA, April 6th, 2019

Contents

Conceptual NIST Reactor

- Computational Models
- Results Comparison

Conclusion and Future Work

3-D Cutaway View of the Proposed NIST Reactor

ae of Enaineerina

- Tank in pool reactor
- 20MW thermal power and 30-day operating cycle
- Low enriched uranium (LEU) U₃Si₂-Al
- Cooled by forced downward circulation
- Moderated by heavy water

Research background and Purpose

Preliminary neutronics and T/H safety analyses have been performed.

- Neutornics: Monte Carlo code MCNP.
- Safety analyses: Modular channel code PARET.

To overcome computational modeling limits, RELAP5-3D will be used.

- Nodalization of the core and other important components of PCS.
- Comparison study of the system behavior predicted by both T/H codes.

Reactor Core Model in the Relap5-3D

Boundary Conditions

• Time-dependent control volumes and junctions

Upper and bottom plenum

• Branch

Hydrodynamic channels

- Hot channel, average channel and bypass channel
- Divided into 17 control volumes

Fuel element

Heat structures

MTR Fuel Element and Flow Channel Modeling

Key Parameters for RELAP5-3D Model

	1		
6			2
R		\checkmark	5

Materials	Values	
Fuel meat material	U ₃ Si ₂ -Al	
Fuel type	Plate type	
Fuel density (g/cc)	6.53	
Enrichment (wt%)	19.75	
U-235 loading (g/plate)	391.47	
Fuel assembly geometry	Values	
Fuel assembly	18	
Fuel plates per assembly	17	
Aluminum plates	2	
Fuel plate width (cm)	6.665	
Fuel meat width (cm)	6.134	
Fuel plate thickness (cm)	0.127	
Fuel meat thickness (cm)	0.066	
Cladding thickness (cm)	0.0305	
Fuel plate length (cm)	60	
Fuel meat length (cm)	67.28	

Thermal-hydraulics	Values
Fuel thermal conductivity (W/m [·] K)	48
Cladding thermal conductivity (W/m [·] K)	180
Fuel volumetric heat capacity (J/m ^{3·} K)	2.225E+6
Cladding volumetric heat capacity (J/m ^{3·} K)	2.419E+6
Inlet coolant temperature (°C)	37
Core outlet pressure (kPa)	200
Total power (MW)	20
Inlet volumetric flow rate (gpm)	8000
Hydraulic diameter (cm)	0.56
Reactor kinetics	Values
Prompt neutron generation time (μ s)	252.63
Effective delayed neutron fraction (β_{eff})	0.00718

°C		Hot Channel			Average Channel	I
	RELAP5	PARET	Deviation	RELAP5	PARET	Deviation
T (Fuel)	108.05	109.38	1.22%	82.52	83.27	0.90%
T(Cladding)	97.91	98.95	1.05%	76.25	76.90	0.85%
T(Outlet)	48.11	48.01	0.21%	46.56	46.49	0.15%

Temperature distribution in End of Cycle (EOC) Core

°C		Hot Channel			Average Channe	I
	RELAP5	PARET	Deviation	RELAP5	PARET	Deviation
T (Fuel)	96.94	98.14	1.22%	73.80	74.44	0.86%
T(Cladding)	89.20	90.10	1.00%	68.96	69.43	0.68%
T(Outlet)	53.74	53.66	0.15%	46.54	46.50	0.09%

Conclusions and Future Work

- The thermal hydraulics properties of the conceptual NIST research reactor core was established and the steady state calculations were performed using RELAP5-3D model.
- Preliminary results produced by the RELAP5-3D have a good agreement with the ones from the PARET code, which verifies the validity of the current model in a certain degree.
- In the next stage, some additional components in the primary cooling system of the reactor, such as heat exchanger and primary loop pump, will be developed using RELAP5-3D model, and design basis accidental transient analyses will be performed using the RELAP5-3D models.

References

- Z. WU, M. CARLSON, R. E. WILLIAMS, S. O'KELLY, and J. M. ROWE, "A Novel Compact Core Design for Beam Tube Research Reactors", Trans. Am. Nucl. Soc., 112, 795-798 (2015).
- Z. WU, R. E. WILLIAMS, J. M. ROWE, T. H. NEWTON, and S. O'KELLY, "Neutronics and Safety Studies on a Research Reactor Concept for an Advanced Neutron Source," Nuclear Technology, 199(1), 67-82 (2017)
- W. L. WOODRUFF and R. S. SMITH, "A User's Guide for the ANL Version of the PARET Code, PARET/ANL (2001 Rev.)," ANL/RERTR/TM-16, Argonne National Laboratory (2001).
- "RELAP5-3D Code Manual," RELAP5-3D Code Development Team (2015)
- Z. WU, R. E. WILLIAMS, and J. M. ROWE, "Hypothetical Accident Analyses on the Proposed Split Core at NIST Using PARET/ANL Code," Proceedings of the 17th International Group on Research Reactors (IGORR) Conference, Berlin, Germany, March 13-17 (2016).

Thank you!

