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INTRODUCTION  
 

Ongoing research has focused on the development of 
more accurate numerical approximations of the neutron 
transport equation to predict the behavior of neutrons in 
nuclear reactors without overwhelming current 
computational resources [1]. The diffusion equation 
greatly simplifies the neutron transport equation without 
sacrificing too much predictive accuracy. This allows for 
scientific research and practical application to proceed 
without prohibitive computational costs [2]. This paper 
specifically intends to explore various numerical 
treatments of the diffusion coefficient in the finite 
difference schemes for solving the neutron diffusion 
equation, with the aim of determining the best candidate to 
be implemented in the finite difference method (FDM) 
based diffusion code to minimizes numerical convergence 
error [3].  

In FDM, the spatial domain of study is divided into 
intervals or meshes. The flux is averaged over each mesh 
to allow for computational simplicity in this area of the 
diffusion equation, thereby limiting the number of 
unknowns and increasing the simplicity of the equation. 
For this reason, FDM produces a relatively simple 
formulation to the diffusion equation that does not overly-
tax limited computational resources [4].  

In this paper, we present four different ways to 
approximate the diffusion coefficient as it appears in the 
finite difference scheme of the diffusion equation. 
Numerical solutions based on these approximations are 
produced respectively. The relative accuracy of each 
solution is revealed by comparison to the analytic solution 
of the specified one-dimensional (1D) example problem. 
The best numerical treatment of the diffusion coefficient is 
determined based on the error analysis of the one-
dimensional cases. These research efforts, however, will be 
extended to a multi-dimensional problem using the results 
obtained in this paper.  
 
THEORY 
 

Considering one energy group and using standard 
notations, the 1D diffusion equation can be described as 

 

.             (1) 

The two corresponding boundary conditions (B.C.) on the 
left and right side the problem can be described by general 
forms as follows:  

 
  (2) 

 
where the subscript L and R represent the left and right 
boundary, respectively. are 
known constants.   and J stand for flux and current at the 
boundary. If we label the discretization meshes for the 1D 
problem as the one shown in Fig. 1, we have 
 

  (3) 

 

 
Fig. 1. The one-dimensional discretization mesh.  
 
To derive the FDM scheme for the diffusion equation, we 
first integrated Eq.(1) over the mesh i, that is 
 

  (4) 

   
Defining the mesh-averaged flux and source as follows  
 

  (5) 

 
and assuming constant material properties within the mesh, 
Eq.(4) becomes 
 

.  (6) 

 
The second order derivative term (the diffusion term) in the 
equation can be processed as follows:  
 

  (7) 
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Here we used the center-difference scheme to handle the 
derivatives at the mesh boundaries, and notate 
 

  (8) 

 
Thus, the diffusion equation can be written as  
 

  (9) 

 
Eq.(9) is the finite difference scheme obtained generally 
applied to the internal meshes in the domain. For the 
boundary meshes, slightly different treatment has to be 
employed to incorporate the boundary conditions provided 
in Eq.(2). For the leftmost mesh (i = 1), the diffusion term 
in the diffusion equation can be evaluated as follows: 
 

  (10) 

 
Here we used the following result derived from the 
boundary conditions [see Eq.(2)] to express the current at 
the left boundary ( ) 

 

.  (11) 

 
With Eq.(10), the finite difference scheme of the diffusion 
equation at the leftmost mesh can be written as  
 

  (12) 

 
To further reduce the redundancy of the unknowns in the 
system of equations, we may assume that the flux at the left 
boundary is equal to the average flux of the leftmost mesh 
 

  (13) 

 
With this approximation, the FDM scheme for the leftmost 
cell becomes 
 

.  (14) 

 

The same procedure can be applied to the rightmost mesh, 
producing the following FDM scheme for this mesh (i = N) 
 

  (15) 

   
Eq.(9), (14), and (15) construct a complete system of 
equations that can be used to uniquely determine the 
solution of the diffusion equation. However, there is one 
parameter in these equations not been clearly defined yet, 
the diffusion coefficients at the mesh interfaces. This is the 
part that we attempt to address in this paper.  

In this paper, we will apply four different 
approximations to the diffusion coefficients at the 
interfaces of the meshes and analyze the influence of these 
approximations to the accuracy of the diffusion solutions, 
particularly in the problems with heterogeneous materials 
configured.  The four different approximations are 
summarized as follows: 
a) Form of an arithmetic mean of neighboring meshes 
 

  (16) 

 
b) Form of an arithmetic mean of neighboring meshes 

with mesh size weighted 
 

  (17) 

 
c) Form of a harmonic mean of neighboring meshes 
 

  (18) 

 
d) Form of a harmonic mean of neighboring meshes with 

mesh size weighted 
 

  (19) 

  
These results will then be compared to the analytic solution 
to the one-dimensional neutron transport theory in an effort 
to determine which solution presents the most accurate 
reflection of reactor conditions.  
 
RESULTS 
 
1. Example One: 

This is a one-region (one material) problem. It is 
imposed with reflective boundary condition (BC) on the 
left side, and vacuum BC on the right side. Constant 
external neutron source is provided everywhere in the 
problem. The analytic solution (exact solution) to this 
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simple problem is easily obtained. The deviations between 
the numerical solutions from the above four different 
implementation of diffusion coefficients and the exact 
solution is shown in Fig. 2 below. 
 

 
Figure 2. Flux deviations from the exact solution. 

 
As seen in Fig. 2, the relative errors increased as it 

neared the vacuum boundary on the right side. This is 
mainly due to the approximation made for boundary flux 
[see Eq.(13)]. Since all errors nearly overlap each other, 
this example did not yield conclusive judgment about 
which treatment of the diffusion coefficient best matches 
analytic results and minimizes error. Due to the nature of 
the one-region problem that has same diffusion coefficient 
everywhere, this is not a surprising result.  
 
2. Example Two: 

This is a two-region (two materials) problem with 
vacuum BC imposed on the left side, and reflective BC on 
the right side. The constant fixed source is only provided 
in the left region. For this simple configuration, the analytic 
solution still can be obtained using characteristic functions 
of the diffusion equation. The similar error analysis is 
performed as the first example, and the deviations of four 
different realizations are shown in Fig. 3.  

 
Figure 3. Flux deviations from the exact solution. 

 

By contrast, a two-region problem yielded clear 
results about which treatment of the diffusion coefficient 
produced the most accurate results when compared with an 
analytical solution.  The simple error analysis on the two-
region problem informs the FDM2—arithmetic mean with 
weighted mesh sizing—obtains the best solution for this 
problem. A more sophisticated multi-region problem can 
be exercised in the similar manner to check the accuracy of 
different FDM methods. 
 
CONCLUSION 
 
This exploration of the effect of different treatments of the 
diffusion coefficient produced an unsurprising and 
inconclusive result when applied to a one-region problem, 
due to the unvarying nature of the diffusion coefficient in 
one-region simulations. By contrast, in applying various 
treatments of the diffusion coefficient to a two-region 
problem, clear results emerged that the arithmetic mean of 
neighboring meshes with weighted mesh size produced the 
smallest deviation from the analytic solution. Therefore, 
this study suggests that arithmetic mean with weighted 
mesh sizing is the most accurate of the four methods tested 
when considering the diffusion coefficient in finite 
difference method. However, this preliminary result is not 
entirely conclusive. More research using more complex 
conditions is needed in order to confirm these suggestions.  
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