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Abstract — This paper extends the applicability of the generalized perturbation theory (GPT)–free
methodology, earlier developed for deterministic models, to Monte Carlo stochastic models. The objective
of the GPT-free method is to calculate nuclear data sensitivity coefficients for generalized responses
without solving the GPT response-specific inhomogeneous adjoint eigenvalue problem. The GPT-free
methodology requires the capability to generate the eigenvalue sensitivity coefficients. This capability is
readily available in several of the state-of-the-art Monte Carlo codes. The eigenvalue sensitivity
coefficients are sampled using a statistical approach to construct a subspace of small dimension that is
subsequently sampled for sensitivity information using a forward sensitivity analysis. A boiling water
reactor assembly model is developed using the Oak Ridge National Laboratory Monte Carlo code KENO
to demonstrate the application of the GPT-free methodology in Monte Carlo models. The response
variations estimated by the GPT-free agree with the exact variations calculated by direct forward
perturbations. The GPT-free method is also implemented in OpenMC and tested with the Godiva model
to show its capability and feasibility in the estimation of the energy-dependent sensitivity coefficients for
generalized responses in Monte Carlo models. The sensitivity results are compared against the ones
acquired by the standard GPT-based methodologies. A higher order of accuracy in the sensitivity
estimation is observed in the GPT-free method.

Keywords — Sensitivity analysis, general perturbation theory–free, Monte Carlo, OpenMC.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

Perturbation theory has attracted the interest of many
engineering practitioners because it allows one to estimate
the variation in a select model’s output, often referred to as
response, resulting from a perturbation in the model’s input
parameters without having to re-execute the model. This
provides an invaluable analysis tool since many engineering
analyses such as design optimization, surrogate models
construction, and uncertainty propagation, etc., require
repeated model execution which is typically overwhelming
for most realistic engineering models.

The term “generalized” has been coined and primarily
used in the nuclear engineering community to differentiate
between two different types of responses important to reactor
analysis. These responses can be calculated following the
solution of the radiation transport model and cast as an
eigenvalue problem [see Eq. (1) in Sec. II] for the critical
eigenvalue and the flux. If the response of interest is the
eigenvalue, one solves the adjoint form of the forward
eigenvalue problem [see Eq. (2) in Sec. II] for the so-called
fundamental adjoint flux, or simply adjoint flux, which can
be subsequently used in conjunction with the forward flux to
estimate the eigenvalue variation resulting from general
parameter perturbations. For all other responses representing
functions of the flux, e.g., reaction rates or reaction rates ratio,*E-mail: abdelkhalik@purdue.edu
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the term generalized is used to describe the use of
perturbation theory. In this case, the adjoint eigenvalue
problem has to be solved again with an inhomogeneous
source term related to the response of interest. Performing
the generalized perturbation theory (GPT) implies the
solution of this inhomogeneous equation for the so-called
generalized adjoint flux, which can be used in conjunction
with the forward flux and the fundamental adjoint flux to
estimate the respective response variations.

In the past few decades, the GPT has been widely
used to perform sensitivity analysis (SA) for radiation
transport models in support of uncertainty quantification,
data assimilation, and design optimization applications.1–5

In our context, a SA is a mathematical procedure used to
estimate the derivatives of the model responses with
respect to the model’s input parameters.a

Because it can calculate a given response variation
resulting from general parameter perturbations, the GPT
is considered computationally superior to forward SA
when the number of responses of interest is relatively
small compared to the number of input parameters.b

However, when the number of responses is large, the
GPT becomes computationally taxing due to the large
number of adjoint calculations needed. This is because
each response of interest requires one generalized adjoint
flux.

To implement the GPT approach in a deterministic
neutronics model, one needs first to formulate the adjoint
model; the mathematical dual of the forward model. Both
the forward and the adjoint models can be described as
eigenvalue problems. For generalized responses, e.g.,
a reaction rate at a certain location in the problem
domain, one needs to solve the adjoint model in both
homogeneous and inhomogeneous forms for the purpose
of overcoming the fundamental mode contamination
issue in GPT theory.1,2 Once the adjoint and forward
solutions are completed, the calculation of the sensitivity
coefficients is considered computationally inexpensive
and straightforward (via simple inner product relations)
when compared to the cost of obtaining the forward and
adjoint solutions.

For stochastically modeled systems such as the Monte
Carlo–based neutronics model, three notable approaches

have been developed to calculate the sensitivity coefficients,
i.e., the first-order derivatives of a response with respect to
the group cross sections. The first approach emulates the
process adopted by the deterministic approach, but employs
a Monte Carlo model to simulate particle transport. For the
forward eigenvalue problem, the flux solution can be
described by tallies that count the number of particles
populating in the various cells in the problem domain. For
the homogeneous adjoint eigenvalue problem, aMonte Carlo
model simulates particles’ importance which can be shown to
be equivalent to the adjoint flux.2 This approach however is
limited to the calculation of the sensitivities of the eigenvalue
only. The second approach6 allows one to calculate
adjoint-weighted tallies without running a separate adjoint
calculation by adapting the iterated fission probability (IFP)
technique to the forward eigenvalue calculation. In this
approach, one can show that the magnitude of the adjoint
flux is directly proportional to the contribution of the particle
to the response of interest in a long timescale, which implies
the particle’s importance to the response. Therefore, the
adjoint flux can be accurately estimated in a forward
continuous-energy Monte Carlo simulation without an extra
overhead to construct the adjoint operator. In nuclear
applications whereby responses of interest are integrals of
adjoint-weighted quantities, such as kinetics parameters and
reactivity changes, the IFP approach has proven to be
effective.6 The third approach, the Contributon-Linked
eigenvalue sensitivity/Uncertainty estimation via Track
length importance CHaracterization, or CLUTCH
method,7 was recently developed by Oak Ridge National
Laboratory and implemented in the SCALE code package.
Instead of accumulating the contribution of the forward
particle during some future generations, the CLUTCH
method determines the particle’s importance by examining
the number of fission neutrons created by that particle based
on the predetermination of the adjoint fission source func-
tion or importance function in a given spatial mesh. The
intriguing point about the CLUTCHmethod is that it can be
readily extended to the GPT framework, which enables the
computation of generalized sensitivity coefficients for
general responses such as reaction rate ratios. However,
the implementation of the CLUTCH method requires
knowledge of the generalized adjoint fission source
function, which is not known a priori. More importantly,
the CLUTCH method quickly becomes computationally
expensive when the number of responses becomes large
owing to the dual influences of the GPT and Monte Carlo
particle simulation.

Our goal on this subject is to devise a new approach that
enables Monte Carlo models to calculate the sensitivity
coefficients of generalized responses without the need to

a For a more general definition of SA, see Saltelli’s book.5
b In forward SA, the forward model must be executed at least
n times, where n in the number of input parameters. In each
execution, one of the parameters is perturbed and the associated
sensitivity coefficients for the perturbed parameter are calculated
using the finite differencing approach. Other variations of this
approach exist, however the cost is always proportional to n.
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determine the generalized adjoint flux and by relying only
on the fundamental adjoint solution. The GPT-free
methodology has been shown to achieve this goal in
deterministic models.8 This is possibly because the
GPT-free depends on an algorithm from randomized matrix
theory referred to as the range finding algorithm (RFA).
This algorithm takes advantage of the correlation inherent
in the simulation between the various responses by
identifying the so-called active subspace in the input
parameters–space. The active subspace comprises all
parameter variations that impact all of the model’s
responses of interest. The implication is that there exist
many directions in the parameter-space that are orthogonal
to the active subspace that do not impact the responses. This
subspace can be identified by calculating the derivatives of
a pseudo response, which is a function of all of the model’s
responses. The keff is shown to be an ideal pseudo response
because it involves all the flux values everywhere in the
combined spatial and energy phase-space. Earlier results of
the application of the GPT-free methodology to
deterministic models have shown that the size of the active
subspace is extremely small compared to the size of the
input parameters and responses-spaces. The implication is
that one could justify the use of forward SA thereby
precluding the need to set up the GPT equations. This
paper extends this idea to Monte Carlo models.
Furthermore, a comprehensive description of the GPT-free
methodology is provided here that builds upon the initial
description given in Ref. 8 to develop the so-called
“kappa-metric” used to select the size of the active subspace.

Development of an efficient SA for Monte Carlo models
is an important and relevant objective given the increased
reliance on Monte Carlo models as viable alternatives to
deterministic methods for completing reactor physics design
and analysis calculations. This is because Monte Carlo
methods provide more flexibility for complex reactor
geometries and can use the pointwise cross sections directly
precluding the need for characteristic of deterministic
methods and error-prone group collapsing and
homogenization procedures. By tracing the history of each
individual particle, theMonteCarlomethod predicts the exact
path of that particle and calculates many useful quantities of
interest by averaging over a very large number of particle
histories. Tracking millions to billions of particles is now
considered possible given the startling growth in computer
power over the past couple of decades. For a GPT-based SA,
Monte Carlo methods suffer from two major drawbacks:

1. The execution time is too long to render the
repeated execution of the model as required by SA com-
putationally feasible.

2. The statistical variations resulting from the
inherent randomness of the simulation must be accounted
for in order to differentiate them from the response varia-
tions resulting from parameter perturbations.

These limitations motivate the current work to extend
the GPT-free methodology to Monte Carlo models. The
primary goal of this extension is to preclude the need for
a generalized adjoint capability, reduce the computational
overhead required when repeated execution of the models
is needed, and most importantly, retain an acceptable level
of accuracy when compared to the results of existing GPT
theory.

The paper is organized as follows. Section II pro-
vides a brief overview of GPT theory as applied to
deterministic models and highlights the limitations cir-
cumvented by the GPT-free methodology. Section III
reveals the theory behind the GPT-free methodology
and the implementations in Monte Carlo models.
Section IV presents a couple of test examples to demon-
strate the feasibility and capabilities of the GPT-free
method in Monte Carlo applications. The first example
is a boiling water reactor (BWR) assembly model with
the KENO-V.a code, part of the SCALE (Ref. 9) software
package. The second example is the Godiva model devel-
oped in OpenMC (Ref. 10). For the sake of a complete
discussion, some of the numerical results presented in
recent American Nuclear Society venues11–13 are
repeated here before presenting the new results of the
current work. Section V concludes the discussion and
offers remarks about future work on the GPT-free method
applications.

II. GPT BACKGROUND

When applied to calculate the sensitivities of
a general response using a deterministic model, the GPT
approach requires the solution of an inhomogeneous
eigenvalue problem representing the adjoint of the for-
ward eigenvalue problem. The inhomogeneous term
depends on the response of interest. The sensitivities of
the response could then be determined as a function of
the forward and the generalized adjoint flux using simple
inner product relations. Mathematically, this procedure
may be described with Eqs. (1) and (2):

L� λFð Þϕ ¼ 0 ð1Þ

and

L� � λF�ð ÞΓ� ¼ g ; ð2Þ
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where

L (L�), F (F�) = forward (adjoint) loss and produc-
tion operators

λ = eigenvalue (also λ ¼ 1=k, where
k is multiplication factor, or as
hereinafter called, the k eigenvalue)

ϕ = forward flux

Γ� = generalized adjoint flux associated
with the inhomogeneous term
g that depends on the specific
response of interest.

If the eigenvalue represents the response of interest,
g is zero, which reduces Eq. (2) to a homogeneous eigen-
value problem:

L� � λF�ð Þϕ� ¼ 0 ; ð3Þ

where in this case, the adjoint solution ϕ� is referred to as
the fundamental adjoint flux, and the sensitivity coeffi-
cients are then given byc

qλ
qσi

¼
ϕ�

qL
qσi

� λ
qF
qσi

� �
ϕ

� �
hϕ�Fϕi : ð4Þ

The GPT employs a generalized response as a bilinear
ratio of the flux solution which can be used to describe
many responses of interest, e.g., homogenized few-group
cross sections, spectral indices, etc.:

R ¼ hΣ1; ϕi
hΣ2; ϕi : ð5Þ

One can show that g in Eq. (2) is given by

g ¼ qR
qϕ

¼ 1

R
Σ1

hΣ1; ϕi �
Σ2

hΣ2; ϕi
� �

: ð6Þ

The sensitivity coefficients can be determined using inner
product relations of the form:

qR
qσi

¼ R
1

Σ1; ϕh i
qΣ1

qσi
; ϕ

� �
� 1

Σ2; ϕh i
qΣ2

qσi
; ϕ

� ��

� Γ�;
qL
qσi

� λ
qL
qσi

� �
ϕ

� ��
:

ð7Þ

Since the operator in Eq. (2) is singular, one cannot
solve for the generalized adjoint without first solving
for the fundamental adjoint from Eq. (2). This is because
the so-called fundamental mode decontaminationd strat-
egy is needed to iteratively remove, via inner product
relations, the component of the fundamental adjoint
from the generalized adjoint,1,2 otherwise convergence
will not be reached. In deterministic models, if the
model is capable of solving the fundamental adjoint
equation, it often takes little effort to extend it to solve
for the generalized adjoint. The computational cost
however is often two to six times more expensive than
solving the forward or the fundamental adjoint
problem.14

For Monte Carlo models, the situation is a little
different. As described earlier, the solutions to Eqs. (1)
and (2) can be simulated by one of two approaches. In
the first approach, one employs Monte Carlo to track the
particles and their importance maps in the various
regions in the phase-space. These quantities can be
used to estimate the forward and adjoint flux, which
allows one to calculate the sensitivities of the eigenvalue
as done in Eq. (4); see TSUNAMI-3D (Ref. 15) for an
example of such an approach. In an alternative
approach, it has been shown recently that one could
bypass the solution of the fundamental adjoint flux and
calculate directly the sensitivity coefficients of the
eigenvalue.6 As described in Sec. I, this approach inter-
prets the adjoint flux as the iteration fission possibility
and enables the rigorous estimation of adjoint-weighting
factors in continuous-energy Monte Carlo k-eigenvalue
calculations. Based on this interpretation, the sensitivity
coefficient, if it is in the form of integrals of adjoint-
weight quantities, can be obtained via the extension of
the general adjoint-weighted tally methods, which can
be described as follows:

T ¼ 1

N

X
p

πpωp ; ð8Þ

c Both notations ha; bi ¼ aTb have appeared in nuclear engineering
literature to denote the inner product between two vectors (discrete
case) or two functionals (continuous case). They will be used
interchangeably throughout the text.

d The solution of generalized adjoint flux typically contains funda-
mental homogeneous adjoint flux, and thus the fundamental mode
decontamination process is usually performed on the converged
solution to remove this component to obtain the pure generalized
adjoint flux solution.
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where

N = total source weight of generations in the
simulation

ωp = original generation contributions of general-
ized tally scores (such as reaction rates or
ratio of two reaction rates)

πp = track-length estimator in the final generation
population that can be used to estimate the
importance function.

Unlike the deterministic world, calculating the adjoint
flux appears to be a nontrivial task in Monte Carlo models
as it is not clear how a Monte Carlo model could be used to
simulate the fundamental mode decontamination, which is
easily accomplished in a deterministic model via a Gram-
Schmidt orthogonalization strategy.16

III. GPT-FREE METHODOLOGY

Recently, the GPT-free methodology has been intro-
duced as an alternative approach for the traditional GPT
approach described in Sec. II (Ref. 8). The idea is that
instead of calculating directly the sensitivities of the
response of interest, the algorithm begins by establishing
the so-called pseudo response, which is a general function
of the state solution, i.e., the flux for radiation transport
problems. The pseudo response attempts to identify the
minimum number of degrees of freedom required to
describe all possible flux variations, which directly impacts
the degrees of freedom available in any set of user-selected
responses. Many studies17–19 have shown that the flux
solution exhibits a high degree of correlation between its
components. The GPT-free takes advantage of this obser-
vation by defining a pseudo response that allows one to
estimate the so-called active subspace in the parameters-
space. This is done by selecting the eigenvalue as a pseudo
response and sampling the eigenvalue sensitivity coeffi-
cients at random points in the input parameters-space. This
can be achieved by re-evaluating the fundamental adjoint
multiple times with different input parameter perturba-
tions. The resulting sensitivity coefficients, with each
model execution producing a vector of sensitivities, are
aggregated in a matrix which is later processed using
a rank revealing decomposition to determine the effective
size of the active parameters-subspace. Previous work8 has
shown that the size of the active parameters-subspace is
much less than the number of original parameters. This
allows one to employ a forward SA to determine sensitiv-
ity coefficients for all responses of interest, thereby

avoiding the use of Eq. (3). This capability has been
demonstrated for deterministic models. In Sec. III, we
recall some of these developments and explain their exten-
sion to Monte Carlo models.

The GPT-free methodology starts with the observa-
tion that any generalized response, e.g., reaction rate in
a given region (space and/or energy) in the flux phase-
space, can be expressed as a function of the flux and the
input parameters, i.e., cross sections:

Ri ¼ Ri σ; ϕð Þ; i ¼ 1; 2 ; � � � ; m : ð9Þ

In this representation, m is the total number of responses of
interest in the problem, and ϕ is a vector of all flux in
terms of all variables in the phase-space, including energy
and spacial variables. In reality, local responses depend
only on few of these flux values, but the above representa-
tion in Eq. (9) is meant to be general. The k eigenvalue
describes the neutron balance in the core represented as
a ratio of the neutron production and loss terms, which are
both functions of the flux values and the cross sections:

k ¼ k σ; ϕð Þ : ð10Þ

Note that unlike the responses, the eigenvalue depends on
the flux values everywhere in the phase-space, implying
that every single neutron contributes to the multiplication
of the system. The responses however could be localized
in space and/or energy. Therefore, k may be implicitly
related to all generalized responses of interest, described
mathematically by

k ¼ kðR1 ; � � � ; RmÞ : ð11Þ

Through the chain rule of differentiation, it is easy to
show that the derivative of k with respect to cross sec-
tions, compactly referred to as the k sensitivity vector (or
profile), is a linear combination of all responses’ sensi-
tivity vectors, i.e.,

dk
dσ

¼
Xm
i¼1

qk
qRi

dRi

dσ
: ð12Þ

The elements of the vector dk=dσ represent the first-order
derivatives of k with respect to cross sections (commonly
referred to as sensitivity coefficients). Similarly, the vec-
tor dRi=dσ contains the sensitivity coefficients for the i’th
response, and dk=dRi is a scalar quantity representing the
derivative of k with respect to the i’th response, which is
expected to be a function of cross sections, composition,
geometry, etc. The group cross sections are described by
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a vector of length n, i.e., σ 2 R
n. Second, the gradient

calculus definition, which is the direction of maximum
response change, basically implies here that parameter
perturbations that are orthogonal to the sensitivity vector,
i.e., gradient, will produce locally zero response
variations. Now, consider the subspace Z described by

Z ¼ span
dR1

dσ
;
dR2

dσ
; � � � ; dRm

dσ

� 	
2 R

n : ð13Þ

This subspace spans all vectors in the parameter-space that
can be described as linear combinations of the unknown
responses sensitivity vectors. In reality, the subspace Z can
be considered as a reduced order model (ROM) of the
forward model, which in theory can be constructed by
many methods with different degrees of approximation.

Implied by Eq. (12), the eigenvalue sensitivity vector
belongs to the subspace Z. The dimension of this subspace
r can be as large as the dimension of the parameter-space n.
However, it has been observed that in most realistic models
r is much smaller than n (Refs. 17 and 20). The calculus
definition for the gradient then implies that any parameter
perturbations that are orthogonal to this subspace will be
orthogonal to all responses sensitivity vectors as well as the
k-eigenvalue sensitivity vector, and hence, are expected to
produce zero response variations. If r < n, the implication
is that there are n� r directions in the parameter-space that
produce zero variations in the responses of interest.
Therefore, if the number of responses in a problem becomes
large, the GPT-free method outperforms the GPT method
because the GPT-free method essentially follows the path-
way of the forward method. Furthermore, if the dimension
of the subspace r is small and one can readily identify the
subspace Z, a forward SA could be employed instead of
a GPT approach to calculate responses sensitivities. In this
case, the effective number of input parameters is reduced to
r, and hence, the computational cost will be proportional to
r rather than n. This represents the basic philosophy behind
the GPT-free methodology.

It is important to note that in practice whenever cross
sections are varied, the responses are expected to change.
In our context, zero response change implies that the
change is negligibly small. Therefore, it is important that
the user defines the accuracy sought for the sensitivities
which is used by the GPT-free algorithm to determine the
appropriate size r of the subspace Z. Moreover, an error
analysis ensuring that all sensitivities are estimated within
the user-defined accuracy must be carried out.

The subspace Z estimated via the so-called RFA, the
error analysis resulting from restricting parameter
perturbations to the subspace, and finally, the forward

SA to determine responses sensitivities, are detailed in
Secs. III.A, III.B, and III.C.

III.A. Estimation of the GPT-Free Subspace Z

Returning to the definition in Eq. (13), form a symbolic
matrix which contains the m responses sensitivity vectors as
columns:

B ¼ dR1

dσ
;
dR2

dσ
� � � dRm

dσ

� �
2 R

n � m : ð14Þ

These columns are not known a priori, thus assume that
the matrix is available in an abstract form only. As
described earlier, to complete the forward SA, the GPT-
free algorithm requires the determination of the subspace
Z. From linear algebra, this subspace represents the math-
ematical range of the matrix B, i.e., RðBÞ ¼ Z, which is
defined as follows:

RðBÞ ¼ q; such that q ¼ Bχ for all χ 2 R
mf g :

ð15Þ

This definition describes the set of vectors that can be
generated by all possible linear combinations of the col-
umns of the matrix B. In past work, an RFAwas introduced
that employs only matrix products with random vectors.20

In an article appearing in the applied mathematics
community,21 rigorous error bounds were developed for
this algorithm. The computational cost is r þ s random
matrix-vector products, where r is the expected rank of the
matrix and s are additional oversamples employed to ensure
the user-defined error tolerance is achieved.

Introducing the RFA, employing Eq. (12), and defin-
ing χ 2 R

m as an m-tuples vector whose i’th component
is given by χi ¼ qk=qRi, one can rewrite the k-eigenvalue
sensitivity vector as follows:

dk
dσ

¼ Bχ ; ð16Þ

where χ 2 R
m is an m-tuples vector whose i’th compo-

nent is given by χi ¼ qk=qRi. Equation (16) implies that
the evaluation of the k-eigenvalue sensitivity vector is
equivalent to performing a matrix-vector product invol-
ving the unknown matrix B. This process could be
repeated as many times as needed with different para-
meter perturbations to emulate the effect of randomized
matrix-vector product as required by the RFA mentioned
above. The implication is that the k-eigenvalue sensitivity
vector is a vector that lives in the subspace Z. By creating
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different snapshots of that vector, each created with rando-
mized parameter perturbations, one can span the entire
subspace Z. The use of random numbers is required by the
RFA. It ensures that the first r matrix-vector products are
independent, and hence, can be employed to form a basis for
the subspace. Assuming Z has dimension r, all additional
matrix-vector products become linearly dependent on the
first r vectors. This helps trigger a termination point for the
RFA. For more details on the theory and history of RFAs,
Refs. 21 and 22 are highly recommended.

As employed by the GPT-free methodology, the RFA
is described as follows:

1. Estimate initial dimension r, and let r’ = r.

2. Generate r’ cross-section perturbations repre-
sented by Δσf gr0i¼ 1

3. Generate t more cross-section perturbations,
and let r’ = r’ + t

4. Employ the available methodology to evaluate
the sensitivity coefficients of the eigenvalue and form the

matrix Z ¼ dk
dσ

� 	r0

i¼ 1

2 R
n� r

5. Calculate the QR decomposition Z ¼ QR

6. Generate j random cross-section perturbations

Δσf gji¼ 1, where j is determined from Wilks’ formula.23

7. Calculate the components Δσ?f gji¼ 1 of the
cross-section perturbations in step 4 that are orthogonal to
the range of ZT via Δσ?i ¼ I�QQT


 �
Δσi, i ¼ 1; 2; � � � ; j

8. Execute the forward model j times using the
orthogonal perturbations from step 7, and record the
responses variations

9. Test the κ-metric (which is described in Sec. III.B),
if the user-defined error criterion is not met, return to step 3;
otherwise the range r is set to be r’

10. END

In the current implementation, the input perturbations in
step 2 comprise cross-section perturbations only, but in gen-
eral one could include other types of input parameter pertur-
bations such as isotopic concentration, geometry, etc., when
one is interested in getting the sensitivity coefficients for
a wider range of conditions, e.g., overdepletion, different
spectral conditions, etc.

III.B. GPT-Free Error Analysis (κ-Metric Definition)

Employing the results from Sec. III.A, the subspace
Z may be described by a set of basis vectors as follows:

Z ¼ span q1; q2; � � � ; qj
�  2 R

n :

Now consider any general input parameter (i.e., cross
sections) perturbation, one can write:

Δσ ¼ Δσk þ Δσ? ; ð17Þ

where

Δσk ¼
Xr
i¼1

qiq
T
i

 !
Δσ

and

Δσ? ¼ I�
Xr
i¼1

qiq
T
i

 !
Δσ :

A graphic interpretation of the projections given in
Eq. (17) is illustrated in Fig. 1.

The basic premise of the GPT-free methodology is
that a perturbation orthogonal to the subspace Z, such as
the component Δσ?, does not change (within user-
defined accuracy) the responses of interest. This means

Ri σ0 þ Δσð Þ � Ri σ0 þ Δσjj
� ���� ��� � ε; i ¼ 1; 2; � � � ;m : ð18Þ

To ensure the credibility of the GPT-free results, this pre-
misemust be carefully assessed using an error analysis. This
is facilitated by employing an order statistics–type metric,
referred to hereinafter as the κ-metric,20 calculated to ensure
Eq. (18) is satisfied for all responses.

The κ-metric is based on Wilks’ order statistics,
where one can assign a confidence for the measure in

Fig. 1. Projection of Δσ onto the subspace Z.
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Eq. (18) due to j samples and a probability p (Ref. 23).
The required number of samples j can be determined
from the Wilks’ formula:

1� p j

 �� j 1� pð Þp j�1 � c ; ð19Þ

where p is the probability and c is the confidence. Using
this definition, if jp of the j samples meets the error
tolerance in Eq. (18) then the accuracy of the determined
subspace is acceptable with confidence c.

The specific form of the κ-metric should be application
dependent, i.e., determined by the user to meet the needs of
the analysis. Below are some examples. Equation (20)
calculates the absolute error for the i’th response resulting
from the discarding of the orthogonal component:

κi ¼ Ri σ0 þ Δσð Þ � Ri σ0 þ Δσjj
� ���� ��� : ð20Þ

Equation (21) calculates a single κ-metric as the root-
mean-square absolute error for a group of responses of
the same type, e.g., flux distribution:

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

Ri σ0 þ Δσð Þ � Ri σ0 þ Δσjjð Þj j2
vuut : ð21Þ

Equation (22) duplicates Eq. (21) but in a relative sense:

κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

Ri σ0 þ Δσð Þ � Ri σ0 þ Δσjjð Þj j2
s

1

N

XN
i¼1

Ri σ0ð Þj j
: ð22Þ

Note however that all responses are normalized by the
same value; in this example, the average reference
response:

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

Ri σ0 þ Δσð Þ � Ri σ0 þ Δσjjð Þ
Ri σ0ð Þ

����
����
2

vuut : ð23Þ

One can also calculate the root mean square for the
relative error calculated for each response where the
normalization is response dependent. This error metric
choice is typically unfavorable because it amplifies the
effect of large relative errors for responses whose abso-
lute values are negligibly small.

III.C. GPT-Free Forward SA

This subsection describes how the sensitivity coeffi-
cients for the responses of interest are calculated once the
subspace is identified and the error analysis is completed.
Recall the responses equation:

Ri ¼ Ri σ; ϕð Þ : ð24Þ

Since the flux and the cross sections are related by the
forward model, i.e., the flux is determined based on the
input cross sections, one can write the response as
a function of the cross sections only:

Ri ¼ Ri σð Þ : ð25Þ

The previous discussion implies that the response calcu-
lated with a general cross-section perturbation Δσ can be
approximated by

Ri ¼ Ri σ0 þ Δσjj
� �

; ð26Þ

where Δσjj ¼ QQTΔσ. This implies that in general Δσjj

has nonzero components along the r columns of the
matrix Q, which may be expressed as

Δσjj ¼
Xr
i¼1

αiqi ; ð27Þ

where αi ¼ qTi Δσ
jj is the component of Δσjj along qi. One

can then rewrite the response equation as

Ri ¼ Ri σ0 þ
Xr
i¼1

αiqi

 !
or Ri α1; α2; � � � ; αrð Þ : ð28Þ

Equation (28) implies that any general response
depends on r-reduced input parameters, which repre-
sent the components of a general cross-section pertur-
bation along the qif gri¼1 vectors. If r is a small
number, one can employ finite differencing to calcu-
late the sensitivities of the responses with respect to
these reduced parameters. These sensitivities can then
be folded back in terms of the original parameters.
One important advantage of this approach is that it
allows one to evaluate higher-order derivatives if non-
linear behavior is of interest. Higher-order derivatives
are expensive to obtain if the number of input para-
meters is very large. This will be investigated in
future work.
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First, the forward SA may be executed as follows:

1. FOR j ¼ 1; � � � ; r
2. Pick a scalar perturbation Δαj

3. Calculate ΔRi ¼ Riðσ0 þ ΔαjqjÞ � Riðσ0Þ for all
responses of interest.

4. END

Assuming the perturbations are within the linear
range, one can approximate ΔRi as follows:

ΔRi ’ qRi

qαj
� Δαj : ð29Þ

Using the chain rule of differentiation:

dRi

dσ
¼ dRi

dα
dα
dσ

¼
Xr
j¼1

qRi

qαj

dαj
dσ

¼ Q
dRi

dα
: ð30Þ

IV. NUMERICAL EXAMPLES

IV.A. BWR Assembly Model

A BWR 10 × 10 lattice model is studied serving as
the first test example for the application of the GPT-free
methodology. The model is originally developed for the
Monte Carlo code MCNP (Ref. 24) and has been con-
verted for the TSUNAMI-3D (Ref. 15) sequence in the
SCALE code package.9 The multigroup Monte Carlo–
based KENO-V.a module in TSUNAMI-3D sequence
solves for both the fundamental forward and adjoint
fluxes which are subsequently used by the SAMS module
to calculate the sensitivities of the k eigenvalue. SAMS
employs traditional perturbation theory approach to cal-
culate the first-order derivatives of k with respect to cross
sections.

The BWR assembly, depicted in Fig. 2, consists of 91
fuel pins laid over a 10 × 10 grid with a square-shaped
coolant channel in the middle of the assembly. The
assembly employs UO2 nuclear fuels with seven different
235U enrichments. The dimensional quantities for the
major components in the assembly are summarized in
Table I.

Tomeasure the efficiency of the GPT-freemethodology
in a general scenario when all isotopes and their associated
reaction types are included, the initial model is depleted
over a 365-day cycle and the fuel compositions at the
middle of the cycle are taken to represent the model. The

compositional inventory is represented by seven types of
UO2 nuclear fuels with different 235U weight percent
enrichments and fission product compositions.

In this preliminary study, the average fission spectrum
χg, the fission and capture cross sections of nine fissionable
nuclides, and the capture cross sections of 14 notable fission
products are considered as input parameters whose sensitiv-
ities are to be calculated. Using a 238-energy-group struc-
ture for seven different mixtures, the total number of input
parameters is (3 × 9 + 14) × 238 × 7 = 68 306. The reference
eigenvalue is given by k ¼ 1:0723� 0:0001. Note that the
statistical uncertainty is in the order of 10 pcm ofΔk=k. This
error represents deviations in the k due to the statistical
nature of Monte Carlo calculations, and it is therefore rea-
sonable to expect the same level of discrepancy for the GPT-
free results. In the application of larger practice problems,
a looser convergence criterion (such as an order of 100 pcm
for Δk=k) could be used for the subspace development to
save computation cost, but the tolerance of the κ-metric has
to be adjusted accordingly, which will inevitably degrade

Fig. 2. Schematic view of the BWR assembly.

TABLE I

Dimensions of Major Components in the Assembly

Component Dimension

Assembly Length 13.400 cm
Boundary 13.860 cm

Water hole Length 1.295 cm
Fuel pin Pellet diameter 0.867 cm

Cladding inner 0.884 cm
Cladding outer 1.005 cm
Pitch 1.295 cm
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the accuracy of the GPT-free model. Thus a trade-off study
is needed to balance the efficiency and accuracy of the
method.

In this study, the sensitivity coefficients for k are
calculated via a traditional perturbation theory approach
which combines the fundamental solutions for the for-
ward and adjoint eigenvalue problem. This is done by the
SAMS sensitivity evaluation module. It is worthwhile to
note here that in general the GPT-free methodology does
not restrict the manner by which the first-order deriva-
tives are calculated. It however requires that one have
access to a capability that generates first-order derivatives
for k at user-defined input cross-section values.

The GPT-free employs a RFA approach to construct
the Z subspace.21,25,26 The algorithm has been described in
detail in Sec. III and is briefly re-iterated here:

1. Randomly perturb cross sections σpert;i ¼ σ0 þ Δσi

2. Execute the SA sequence in SCALE to calculate
dk=dσji

3. Repeat r times and form the decomposition:

QR ¼ dk=dσj1 � � � dk=dσjr½ 	 2 R
n�r

4. Evaluate the κ-metric; increase r until error is
below user-defined tolerance.

The κ-metric for the k-eigenvalue changes with the
increase of dimension of the subspace in this study is
shown in Fig. 3.

Here the κ-metric is defined as the form of

κ ¼ kpert � kapp
�� �� ; ð31Þ

where kpert represents the exact value for k due to a general
cross-section perturbation and kapp represents the GPT-free
approximation, resulting from restricting the cross-section
perturbations to the GPT-free subspace. The cross-section
perturbations associated with each case is given by:

σpert ¼ σ0 þ Δσ ð32Þ

and

σapp ¼ σ0 þ QQT

 �

Δσ :

The results indicate that the error initially declines with
increasing the dimension of the subspace. The rate of error
decline decreases and a plateau behavior develops starting
at approximately r = 619, which is two orders of magni-
tude smaller than the original number of input parameters,
n = 68 306. Note that the minimum error reached is about
10 pcm, which is of the same order of magnitude of the
statistical uncertainty in the estimated k value.

The κ-metric for the thermal flux is shown in Fig. 4
as the dimension of the subspace is increased. The plots
in Fig. 4 exhibit the same behavior as Fig. 3 does as
a function of the dimension of the subspace. From the
reference case, the statistical error of the thermal flux
averages at 0.038%. The plots in Fig. 4 show that the
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Fig. 3. The κ-metric for the eigenvalue.
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κ-metric plateaus at the level of statistical uncertainty,
with a minimum rank of r = 619 in this study.

To quantify the discrepancies between the GPT-free
estimated and exact responses, 30 cases are employed with
random cross-section perturbations, and the respective
response variations are compared. Figure 5 demonstrates
the results of the study for the eigenvalue as a response.

The eigenvalue discrepancy is shown in per cent mille.
Each of the blue dots represents the exact variation in the

eigenvalue due to a given random cross-section perturbation.
The red circles represent the κ-metric, that is the discre-
pancy between the GPT-free estimate and the exact var-
iation for each case calculated with a rank r = 619. i.e.,
kpert � kapp
�� ��, the cross sections associated with kpert and
kapp are described in Eq. (32). The results show that the
discrepancies are in the order of 10 to 50 pcm, which is
the same order of magnitude of the statistical uncertainty
of reference calculations.
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To check the adequacy of the subspace to capture
generalized responses, the thermal flux values in different
pins are employed as responses. Figure 6 shows the
thermal flux discrepancy errors for a representative pin
for each of the 30 cases studied. The variations on the
y-axis are normalized to the average thermal flux value.

Similarly, the blue stars display the exact variations,
and the red circles describe the discrepancies. The results
indicate that the discrepancies are consistently low and of
the same order of magnitude as the statistical error of
thermal flux from the forward calculations averaging at
0.038%. It is worthy of mentioning that both the differ-
ences in Fig. 6 and the statistical error of thermal flux are
measured in a relative sense to the averaged thermal flux
in the reference calculations, that is err ¼ σΦT

ΦT
0
.

IV.B. Godiva Model

Godiva, a fast-spectrum criticality benchmark pro-
blem model, is used as a second test bed for the applica-
tion of the GPT-free method in Monte Carlo models.
Godiva is a bare metallic sphere of highly enriched
(94 wt%) uranium. The Godiva sphere benchmark con-
tains isotopes 234U,235U, and 238U, and has a radius
8.74 cm. OpenMC (Ref. 10) is adopted as the Monte
Carlo tool to analyze the Godiva model in this paper
because continuous-energy SA capabilities were recently
developed in OpenMC (Ref. 27) with a combination of
IFP method6 and CLUTCH methods,7 which enables
OpenMC to calculate sensitivity coefficients for both

the k eigenvalue and generalized responses (e.g., reaction
rate ratios) via the conventional GPT methodologies
popularized in the deterministic transport community.1–5

This makes OpenMC an ideal tool for assessing the
efficacy of the GPT-free method in estimating nuclear
data sensitivity coefficients.

To assess the GPT-free method, the IFP module in
OpenMC is used to calculate k-eigenvalue sensitivity
with respect to the fission cross section of 235U while
the CLUTCH-FM module is used to calculate sensitiv-
ities of a generalized response of interest. Without loss of
generality, a generalized response function considered in
this work is defined as

R ¼ Σ
238U
f ϕ

Σ
235U
f ϕ

; ð33Þ

namely, the ratio of integrated fission reaction rates of
two fissionable nuclides, 235U and 238U. This quantity is
of interest in determining the fast neutron utilization
factor, one of the important factors in the famous four-
factor formula used to estimate the neutron multiplication
factor of a reactor. This quantity is also very useful to
justify the unique and strong feature of the GPT-free
method on responses that cannot be efficiently handled
by the GPT approach because it involves individual reac-
tion rate, flux, etc. The standard SCALE 44-energy-group
structure28 is utilized in the perturbation and sensitivity
profile calculations, while the 300 K ENDF/B-VII.1

Fig. 6. The GPT-free errors for thermal flux.
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library is used as the input neutron cross-section data for
OpenMC simulation.

The standard GPT-free algorithm applied to the
above BWR assembly model in KENO is performed on
the Godiva model with similar steps implemented in
OpenMC. The cross-section perturbations in this example
are achieved by adding noise to the fission cross section
of 235U in each group following a Gaussian distribution
with a relative standard deviation of 2% (larger devia-
tions are also tested in the model and the same effect on
the results is noticed). These randomly perturbed cross
sections are employed to perform k-sensitivity calcula-
tions using OpenMC. The characteristic subspace matrix
of the sensitivities can be constructed from the energy-
groupwise k-sensitivity coefficients, followed by identi-
fying a subspace or ROM through QR decomposition of
the subspace matrix.

Following the RFA in Ref. 23 a reduced rank of
r = 12 is estimated to limit the associated errors in the
k eigenvalue resulting from the ROM model. If the ROM
model and its associated rank are selected appropriately,
the discarded components should have negligible impact
on the estimated k eigenvalue and other responses of
interest. Figure 7 shows the results of an example com-
paring the ROM model predictions to 50 direct perturba-
tions without any reduction. The circle (red) and plus
(blue) symbols in Fig. 7 represent the changes of the
keff value in the two perturbed conditions, respectively,
while the cross signs show their differences. It is note-
worthy to mention that the statistical errors caused by the
Monte Carlo simulation were purposely controlled to be
negligibly small in all calculations performed in this
study to ensure no cross contamination of the ROM
construction process.

As seen in Fig. 7, the variations of the keff value for
the ROM case accurately approximates the one in the
direct perturbation case. The implication is that a ROM
with an effective rank nearly captures the dominant direc-
tions of cross-section variations.

Next, the sensitivity of a generalized response R was
estimated using the GPT-free theory. A new N set of
randomly generated cross-section perturbations was gen-
erated, and the forward model was executed N times
using OpenMC to determine the variations of the
response as follows:

ΔRi ¼ Rð~σ0 þ Δ~σiÞ � Rð~σ0Þ; i ¼ 1; � � � ;N : ð34Þ

The response sensitivity can then be evaluated by

dR
d~σ

¼QrðΓTÞyΔ~R ; ð35Þ

where

Γ ¼ ½~γ1; � � � ;~γK 	;~γi ¼ QT
r Δ~σi; i ¼ 1; � � � ;N : ð36Þ

For comparison, the same response sensitivity was calcu-
lated using the GPT module developed in OpenMC.
Figure 8 illustrates the 44-groupwise sensitivity coeffi-
cients obtained from the two approaches. Note the
response sensitivities shown in Fig. 8 have been trans-
formed into a dimensionless form, i.e., dR=Rð Þ=ðd~σ=~σÞ,
and presented as sensitivity per unit lethargy rather than
energy. As seen in Fig. 8, the two groupwise sensitivity
coefficient curves yielded by the OpenMC GPT capabil-
ity and the GPT-free method agree quite well. Relative
larger discrepancies are exhibited in higher energies,
which is meaningful as Godiva is a criticality benchmark
operated under fast-spectrum conditions.

Alternatively, the performance of the GPT-free
method can be assessed using the variation of response.
To demonstrate it, we generated another 50 randomly
generated cross-section perturbations. The perturbed
responses are first tallied using forward calculations for
reference. In the same time, the response sensitivities
obtained from both the GPT and GPT-free approaches
are used to predict the response variations described as
follows:

ΔRSA¼ dR
d~σ

� �T

� Δ~σ ; ð37Þ
Fig. 7. Validation of ROM with k perturbations.
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where dR=d~σ was again obtained by Eq. (35). The results
of the three approaches described above are plotted in
Fig. 9, in which the plus and asterisk symbols describe
the absolute errors of predicted response variations using
the GPT-free and GPT approaches, respectively. Figure 9,
consistent with Fig. 8, verifies that both approaches esti-
mate response sensitivity accurately.

It is also observed in Fig. 9 that the GPT-free results are
even closer to the reference perturbation values as compared
to the GPT method. This can be explained by the following
two facts. First, the traditional GPT approach calculates
response variations using first-order approximations,

implying that nonlinear variations are discarded. Second,
the RFA employed to construct the ROM model is based on
sampling of the k-sensitivity vector. The implication is that the
active subspace will capture directions responsible for non-
linear behavior because if the model is perfectly linear, the
k-sensitivity vector will not change. This reveals one of the
key features of the GPT-free: It is capable of identifying an
active subspace that captures both linear and nonlinear varia-
tions. Therefore, if coupled with an effective forward-based
SA, e.g., variance-based decomposition, it can be used to
capture nonlinear variations in a computationally efficient
manner.

V. CONCLUSIONS

The GPT-free methodology is successfully applied to
a Monte Carlo BWR assembly model and Godiva model
to perform SA of generalized responses with respect to
cross sections representing the input parameters to the
model. A ROM is employed to significantly reduce the
effective number of input parameters in order to enable
a forward SA, thereby precluding the need to set up the
conventional GPT inhomogeneous eigenvalue problem.
The algorithm requires access to the sensitivities of the
k eigenvalue only and employs elements from linear
algebra to find the so-called active subspace which
describes the effective input parameters.

Ongoing work focuses on extending this methodology
to include depletion effects for deterministic models as

Fig. 8. Comparison of groupwise sensitivity coefficients by the GPT and GPT-free.

Fig. 9. The GPT-free accuracy for response variations.
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well as Monte Carlo models to replace the traditional
depletion perturbation theory (DPT) developed in the
nuclear engineering community.29 The DPT is computa-
tionally much more demanding than the GPT, especially
when done for realistic reactor models. To our knowl-
edge, there is currently no implementation of the DPT in
any of the commercial or publicly available codes. Our
goal is to render the DPT computationally feasible by
eliminating the need to solve the inhomogeneous eigen-
value problem backward in time. Moreover, we continue
to investigate other approaches to further reduce the cost
of constructing the active subspace. Recent results indi-
cate that one to two orders of magnitude reduction in the
computational cost is possible, which we believe is
essential to render the approach more attractive for
routine design calculations.
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