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MG Discrete Ordinates (SN) 1D Transport Equation

• Advantages
– k-eigenvalue transport problem can be solved using power iteration
– Demonstrates convergent behavior with small mesh sizes
– Various boundary conditions require simple treatments

• Disadvantages
– The source iteration with standard transport sweeping technique to solve for the flux is time-

inefficient
– Matrix instabilities with highly diffusive media (negative eigenvalues, high condition number)

ψ
µ ψ µ φ

χ
µ φ ν φ

→
=

→
= = =
≠

∂ ++Σ = Σ
∂

+ Σ Σ+

∑

∑ ∑ ∑

,
0

, ' ' ' 0 '
' 1 0 ' 1
'

( ) 2 1( ) ( ) ( ) ( ) ( )
2

2 1 1( ) ( ) ( )+ ( ) ( )
2 2

L
mg

m tg mg msl g g l lg
l

G L G
g

msl g g l lg fg g
g l g
g g

x lx x x P xx
l x P x x xk



Adapting to One-Group SN Equations (1/2)

1. Define the angular flux moment coupled to the first equation

2. Write the equation in terms of a known source

3. Reduce the first equation using substitution

4. Consider the equation with angular flux moment order l=1
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4. Define the scalar flux in terms of Gauss-Legendre components

5. Reduce to one-group by dropping g subscripts, where N is the quadrature order

6. Assume homogenous materials and a simple domain 

7. Combine scattering terms to complete the transformation
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Forming the Coefficient Matrix (1/2)

1. Write the One-Group SN Equation in a vector-matrix form as follows

2. Where the vectors 𝛙𝛙(x) and b are respectively 

3. Lastly, we form the Coefficient Matrix by combining righthand components in the 
modified One-Group SN Equations
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• The Coefficient Matrix is as follows:

• If only isotropic scattering considered, it becomes
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Forming the Coefficient Matrix (2/2)



Semi-Analytic Solution (1/2)

• By decoupling the scattering terms from the angular flux vector, we can 
linearly transform the flux vector into the eigenspace of the matrix A

• The vectors 𝛙𝛙(x) and b can be written in terms of the basis-vector u

• The coefficients           are to be determined. Substitution yields
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• Rearrangement leaves a set of First-Order ODE’s

• Because um are independent basis vectors of the eigen-space of A, the 
equations hold iff

• These decoupled equations are linked to only one respective ordinate 
or angular flux component, and can be individually solved with 
analytical techniques.

 
 
  

∂
∂∑ u

N
m

m m m m
m=1

φ (x)+λ φ (x)-b S(x) =0x

∂
∂ 

m
m m m

φ (x)+λ φ (x)-b S(x)=0     for   m=1, ,Nx

Semi-Analytic Solution (2/2)



ODE Solution and Boundaries

• In 1D Slab-Geometry, boundary conditions require known incident flux 
components at slab edges -> Also directionally dependent (±µ)

• The subscripts R and L denote the Right and Left boundary components

• “Semi-Analytic” refers to the discrete directional components, but analytical 
solution in space (x)
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Formation of the Scalar Flux

• The real angular flux is a linear combination of abscissa weights and the fake
angular flux components 

• Substituting this into the definition of the scalar flux

• Defining a dummy variable for simplicity

• The scalar flux becomes a simple summation of components 
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Incident Flux and ‘Boundary Iteration’

• The solution requires solving for N/2 unknown components of 𝛙𝛙(x) at 
boundaries and region interfaces. The simple inverse transformation allows 
for conversion between     and 𝛙𝛙

• Using this, we can guess the half unknown components of the incident flux 
and iterate by replacing the guesses with values of 𝛗𝛗 found analytically 
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Sample mesh with incident flux components



Boundary Iteration vs Source Iteration

• Power Iteration methods with DD schemes, for instance, require a standard 
Transport Sweep to converge on a solution

• The Semi-Analytical method proposed only requires iteration on boundaries 
and region interfaces, meaning there is a dramatic reduction in CPU time, 
despite the large number of equations being solved

• After converging on boundary values, the analytical solutions can be 
calculated simultaneously.

• With E denoting the eigenvector matrix of a given region (Left and Right), the 
simple interface scheme converges naturally with the boundary iteration



Program Hierarchy for the SA Solver

Start of program
Allocate Matrix Storage and Solve for Region Constants 
Beginning of Semi-Analytic Iteration (SA)

Loop on boundaries
Calculate scalar flux at boundary meshes
Check Boundary convergence, update values of 𝛗𝛗

End boundary Loop
Calculate all desired values of scalar flux using converged solutions
End of SA
End of program



Numerical Analysis (1/2)

• A one-region source problem

• Vacuum B.C. is applied on both sides

Region 1
S [cm-1s-1] 100

𝜎𝜎𝑡𝑡 [cm-1] 2.0

𝜎𝜎𝒔𝒔 [cm-1] 1.8

x [cm] 0 ≤ 𝑥𝑥 < 20



Scattering 
Ratio c

SA 
Number

SA 
TimeϮ 

[s]

SI 
Number

SI 
TimeϮ

[s]

Relative 
Error*

0.1 3 0.048 9 0.050 8.07E-04
0.5 6 0.067 26 0.095 6.69E-04
0.9 15 0.155 143 0.381 4.04E-04

0.95 32 0.223 275 0.616 3.27E-04
0.99 463 1.005

Ϯ Computations on an Intel i7 7700K w/ 32GB DDR5 RAM
* Relative 2-normalized error between SI and SA flux

• Benchmarked to SI method with same 
mesh size and quadrature order

• Large edge-error typical of SI

Numerical Analysis (2/2)



Heterogeneous Case Solution (1/2)

• A multi-region source problem w/ anisotropic scattering

• Vacuum B.C. is applied on R.H.S, Incident Flux on L.H.S. so 
that for ( ) 1.0L =ψ 0µ >

Region 1 Region 2 Region 3
S [cm-1s-1] 0 1.0 2.0
𝜎𝜎𝑡𝑡 [cm-1] 1.0 1.0 2.0

𝜎𝜎𝒔𝒔𝒔𝒔 [cm-1] 0.9 0.6 0.8
𝜎𝜎𝒔𝒔𝒔𝒔 [cm-1] 0.8 0.3 0.8

x [cm] 0 ≤ 𝑥𝑥 < 10 10 ≤ 𝑥𝑥 < 17 17 ≤ 𝑥𝑥 ≤ 20



• Benchmarked to SI method with same 
mesh size and quadrature order

• Convergence Tolerance 

• Natural convergence at interfaces
• Some error at region interfaces
• In this case, SA is ~10x faster than SI

Heterogeneous Case Solution (2/2)

710ε −=



Distinctions of Our Method

• Analytic characteristic removes spacial discretization errors
• Simple implementation in 1D case with various conditions
• Uses linear algebra (eigenvalues) and standard 1st ODE solutions
• Bypass time-inefficient transport sweeps and source iteration
• Apply to k-eigenvalue problems
• Straightforwardly expands to multigroup and anisotropic 

scattering cases
• Potentially expanded to multi-dimensional cases



Future Work
• Currently comparing similar methods involving RTE’s and BNTE’s
• K-eigenvalue criticality and two-group case possible to implement
• Two Dimensional case is achievable using Gauss-Legendre 

discretization, for Cartesian and spherical/cylindrical geometries
• Benchmarking using published examples (see Barros & Larsen, 1990) 
• Method requires use of basis-vectors of asymmetric ill-conditioned 

matrix, resulting in negative eigenvalues and divergent behavior with 
a scattering ratio c > 0.97

• Requires work on variable storage optimization to reduce total CPU 
time



Summary
• The Semi-Analytical (SA) method is a simple solution to the 1D 

SN transport problem using decoupled linear ODE’s through 
eigen-vector expansion of a scattering coefficient matrix

• Solution of the ODE’s are found for the given boundary 
conditions

• Numerical results are presented to demonstrate the 
preliminary feasibility of the SA Method and subsequent 
modifications

• Problems and future additions to the project were discussed
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