

A Semi-Analytic Solution on the 1D S_N Transport Equation by Decoupling the In-Scattering Operator

Anderson English, Zeyun Wu

College of Engineering Virginia Commonwe

Department of Mechanical and Nuclear Engineering Virginia Commonwealth University, Richmond, Virginia

Present at PHYTRA4, , Marrakech, Morocco, September 18th, 2018

MG Discrete Ordinates (S_N) 1D Transport Equation

$$\mu_{m} \frac{\partial \psi_{mg}(x)}{\partial x} + \Sigma_{tg}(x)\psi_{mg}(x) = \sum_{l=0}^{L} \frac{2l+1}{2} \Sigma_{sl,g \to g}(x) P_{l}(\mu_{m})\phi_{lg}(x) + \sum_{\substack{g'=1\\g' \neq g}}^{G} \sum_{l=0}^{L} \frac{2l+1}{2} \Sigma_{sl,g' \to g}(x) P_{l}(\mu_{m})\phi_{lg'}(x) + \frac{1}{k} \frac{\chi_{g}}{2} \sum_{g'=1}^{G} v \Sigma_{fg'}(x) \phi_{0g'}(x)$$

Advantages

- k-eigenvalue transport problem can be solved using power iteration
- Demonstrates convergent behavior with small mesh sizes
- Various boundary conditions require simple treatments
- Disadvantages
 - The source iteration with standard transport sweeping technique to solve for the flux is timeinefficient
 - Matrix instabilities with highly diffusive media (negative eigenvalues, high condition number)

Adapting to One-Group S_N Equations (1/2)

1. Define the angular flux moment coupled to the first equation

$$\phi_{lg}(x) = \sum_{m'=1}^{N} w_{m'} P_{l}(\mu_{m'}) \psi_{m'g}(x)$$

2. Write the equation in terms of a known source

$$S_{g}(x) = \sum_{\substack{g'=1\\g'\neq g}}^{G} \sum_{l=0}^{L} \frac{2l+1}{2} \Sigma_{sl,g'\to g}(x) P_{l}(\mu_{m}) \phi_{lg'}(x) + \frac{1}{k} \frac{\chi_{g}}{2} \sum_{g'=1}^{G} \nu \Sigma_{fg'}(x) \phi_{0g'}(x)$$

3. Reduce the first equation using substitution

$$\mu_{\rm m} \frac{\partial \psi_{\rm mg}(x)}{\partial x} + \Sigma_{\rm tg}(x)\psi_{\rm mg}(x) = \sum_{l=0}^{\rm L} \frac{2l+1}{2} \Sigma_{\rm sl,g\to g}(x) P_l(\mu_{\rm m})\phi_{\rm lg}(x) + S_g(x)$$

4. Consider the equation with angular flux moment order *I*=1

$$\mu_{\rm m} \frac{\partial \psi_{\rm mg}(x)}{\partial x} + \Sigma_{\rm tg}(x)\psi_{\rm mg}(x) = \frac{1}{2}\Sigma_{\rm s0,g\to g}(x)\phi_{\rm 0g}(x) + \frac{3}{2}\Sigma_{\rm s1,g\to g}(x)\mu_{\rm m}\phi_{\rm 1g}(x) + S_{\rm g}(x)$$

Adapting to One-Group S_N Equations (2/2)

4. Define the scalar flux in terms of Gauss-Legendre components

$$\phi_{0g}(x) = \sum_{m'=1}^{N} w_{m'} \psi_{m'g}(x), \quad \phi_{1g}(x) = \sum_{m'=1}^{N} w_{m'} \mu_{m'} \psi_{m'g}(x)$$

5. Reduce to one-group by dropping g subscripts, where N is the quadrature order

$$\mu_{m} \frac{\partial \psi_{m}(x)}{\partial x} + \Sigma_{t}(x)\psi_{m}(x) = \frac{1}{2}\Sigma_{s0}(x)\sum_{m'=1}^{N} w_{m'}\psi_{m'}(x) + \frac{3}{2}\Sigma_{s1}(x)\mu_{m}\sum_{m'=1}^{N} w_{m'}\mu_{m'}\psi_{m'}(x) + S(x), m = 1, \dots, N$$

6. Assume <u>homogenous</u> materials and a simple domain $x_{i-1/2} < x < x_{i+1/2}$

$$\mu_{m} \frac{\partial \Psi_{m}(x)}{\partial x} + \Sigma_{t}^{i} \Psi_{m}(x) = \frac{1}{2} \Sigma_{s0}^{i} \sum_{m'=1}^{N} w_{m'} \Psi_{m'}(x) + \frac{3}{2} \Sigma_{s1}^{i} \mu_{m} \sum_{m'=1}^{N} w_{m'} \mu_{m'}(x) + S(x), \quad m = 1, \dots, N$$

7. Combine scattering terms to complete the transformation

$$\frac{\partial \Psi_{m}(x)}{\partial x} + \frac{\Sigma_{t}^{i}}{\mu_{m}} \Psi_{m}(x) = \frac{1}{\mu_{m}} \left[\frac{1}{2} \Sigma_{s0}^{i} \sum_{m'=1}^{N} W_{m'} \Psi_{m'}(x) + \frac{3}{2} \Sigma_{s1}^{i} \mu_{m} \sum_{m'=1}^{N} W_{m'} \Psi_{m'}(x) \right] + \frac{1}{\mu_{m}} S(x), \quad m = 1, \dots, N$$

Sollege of Engineering

Forming the Coefficient Matrix (1/2)

1. Write the One-Group S_N Equation in a vector-matrix form as follows

$$\frac{\partial \boldsymbol{\psi}(\mathbf{x})}{\partial \mathbf{x}} + \mathbf{A}^{i} \boldsymbol{\psi}(\mathbf{x}) = \mathbf{S}(\mathbf{x}) \mathbf{b}$$

2. Where the vectors $\psi(x)$ and **b** are respectively

$$\boldsymbol{\psi}(\mathbf{x}) = \begin{bmatrix} \psi_1(\mathbf{x}) \\ \psi_2(\mathbf{x}) \\ \vdots \\ \psi_N(\mathbf{x}) \end{bmatrix} \qquad \qquad \mathbf{b} = \begin{bmatrix} 1/\mu_1 \\ 1/\mu_2 \\ \vdots \\ 1/\mu_N \end{bmatrix}$$

3. Lastly, we form the Coefficient Matrix by combining righthand components in the modified One-Group S_N Equations

Forming the Coefficient Matrix (2/2)

• The Coefficient Matrix is as follows:

$$\mathbf{A}^{i} = \begin{bmatrix} \frac{1}{\mu_{1}} \left(\Sigma_{t}^{i} - \frac{1}{2} \Sigma_{s0}^{i} w_{1} - \frac{3}{2} \Sigma_{s1}^{i} w_{1} \mu_{1}^{2} \right) & -\frac{1}{\mu_{1}} \left(\frac{1}{2} \Sigma_{s0}^{i} w_{2} + \frac{3}{2} \Sigma_{s1}^{i} \mu_{1} w_{2} \mu_{2} \right) & \cdots & -\frac{1}{\mu_{1}} \left(\frac{1}{2} \Sigma_{s0}^{i} w_{N} + \frac{3}{2} \Sigma_{s1}^{i} \mu_{1} w_{N} \mu_{N} \right) \\ -\frac{1}{\mu_{2}} \left(\frac{1}{2} \Sigma_{s0}^{i} w_{1} + \frac{3}{2} \Sigma_{s1}^{i} \mu_{2} w_{1} \mu_{1} \right) & \frac{1}{\mu_{2}} \left(\Sigma_{t}^{i} - \frac{1}{2} \Sigma_{s0}^{i} w_{2} - \frac{3}{2} \Sigma_{s1}^{i} w_{2} \mu_{2}^{2} \right) & \cdots & -\frac{1}{\mu_{2}} \left(\frac{1}{2} \Sigma_{s0}^{i} w_{N} + \frac{3}{2} \Sigma_{s1}^{i} \mu_{2} w_{N} \mu_{N} \right) \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{\mu_{N}} \left(\frac{1}{2} \Sigma_{s0}^{i} w_{1} + \frac{3}{2} \Sigma_{s1}^{i} \mu_{N} w_{1} \mu_{1} \right) & -\frac{1}{\mu_{N}} \left(\frac{1}{2} \Sigma_{s0}^{i} w_{2} + \frac{3}{2} \Sigma_{s1}^{i} \mu_{N} w_{2} \mu_{2} \right) & \cdots & \frac{1}{\mu_{N}} \left(\Sigma_{t}^{i} - \frac{1}{2} \Sigma_{s0}^{i} w_{N} - \frac{3}{2} \Sigma_{s1}^{i} w_{N} \mu_{N}^{2} \right) \right]$$

• If only isotropic scattering considered, it becomes

$$\mathbf{A}^{i} = \begin{bmatrix} \frac{1}{\mu_{1}} \left(\Sigma_{t}^{i} - \frac{1}{2} \Sigma_{s0}^{i} \mathbf{w}_{1} \right) & -\frac{1}{\mu_{1}} \left(\frac{1}{2} \Sigma_{s0}^{i} \mathbf{w}_{2} \right) & \cdots & -\frac{1}{\mu_{1}} \left(\frac{1}{2} \Sigma_{s0}^{i} \mathbf{w}_{N} \right) \\ -\frac{1}{\mu_{2}} \left(\frac{1}{2} \Sigma_{s0}^{i} \mathbf{w}_{1} \right) & \frac{1}{\mu_{2}} \left(\Sigma_{t}^{i} - \frac{1}{2} \Sigma_{s0}^{i} \mathbf{w}_{2} \right) & \cdots & -\frac{1}{\mu_{2}} \left(\frac{1}{2} \Sigma_{s0}^{i} \mathbf{w}_{N} \right) \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{\mu_{N}} \left(\frac{1}{2} \Sigma_{s0}^{i} \mathbf{w}_{1} \right) & -\frac{1}{\mu_{N}} \left(\frac{1}{2} \Sigma_{s0}^{i} \mathbf{w}_{2} \right) & \cdots & \frac{1}{\mu_{N}} \left(\Sigma_{t}^{i} - \frac{1}{2} \Sigma_{s0}^{i} \mathbf{w}_{N} \right) \end{bmatrix}$$

Semi-Analytic Solution (1/2)

• By decoupling the scattering terms from the angular flux vector, we can linearly transform the flux vector into the eigenspace of the matrix **A**

$$\mathbf{A}^{i}\mathbf{u}_{m} = \lambda_{m}\mathbf{u}_{m} \quad (m = 1, \dots, N)$$

• The vectors ψ(x) and **b** can be written in terms of the basis-vector **u**

$$\boldsymbol{\psi}(\mathbf{x}) = \sum_{m=1}^{N} \boldsymbol{\varphi}_{m}(\mathbf{x}) \mathbf{u}_{m}$$
 $\mathbf{b} = \sum_{m=1}^{N} \mathbf{b}_{m} \mathbf{u}_{m}$

• The coefficients $\varphi_m(x)$ are to be determined. Substitution yields

$$\sum_{m=1}^{N} \frac{\partial \varphi_m(x)}{\partial x} \mathbf{u}_m + \sum_{m=1}^{N} \varphi_m(x) \mathbf{A}^i \mathbf{u}_m = \mathbf{S}(x) \sum_{m=1}^{N} \mathbf{b}_m \mathbf{u}_m$$

Semi-Analytic Solution (2/2)

• Rearrangement leaves a set of First-Order ODE's

$$\sum_{m=1}^{N} \mathbf{u}_{m} \left[\frac{\partial \varphi_{m}(x)}{\partial x} + \lambda_{m} \varphi_{m}(x) - b_{m} S(x) \right] = 0$$

Because u_m are independent basis vectors of the eigen-space of A, the equations hold iff

$$\frac{\partial \varphi_{m}(x)}{\partial x} + \lambda_{m} \varphi_{m}(x) - b_{m} S(x) = 0 \quad \text{for } m = 1, \dots, N$$

• These decoupled equations are linked to only one respective ordinate or angular flux component, and can be individually solved with analytical techniques.

College of Engineering

ODE Solution and Boundaries

 In 1D Slab-Geometry, boundary conditions require known incident flux components at slab edges -> Also directionally dependent (±μ)

$$\varphi_{m}(x) = e^{-\lambda_{m}x} \left(\varphi_{mL} - \frac{S_{0}b_{m}}{\lambda_{m}} \right) + \frac{S_{0}b_{m}}{\lambda_{m}}$$

$$\mu_{m} > 0$$

$$\varphi_{m}(x) = e^{\lambda_{m}(L-x)} \left(\varphi_{mR} - \frac{S_{0}b_{m}}{\lambda_{m}} \right) + \frac{S_{0}b_{m}}{\lambda_{m}}$$

$$\mu_{m} < 0$$

- The subscripts **R** and **L** denote the Right and Left boundary components
- **"Semi-Analytic"** refers to the discrete directional components, but analytical solution in space (x)

Formation of the Scalar Flux

 The *real* angular flux is a linear combination of abscissa weights and the *fake* angular flux components

$$\boldsymbol{\psi}(\mathbf{x}) = \sum_{m=1}^{N} \boldsymbol{\varphi}_{m}(\mathbf{x}) \mathbf{u}_{m}$$

• Substituting this into the definition of the scalar flux

$$\phi(\mathbf{x}) = \sum_{i=1}^{N} w_{i} \psi_{i} = \sum_{i=1}^{N} w_{i} \left(\sum_{m=1}^{N} \phi_{m}(\mathbf{x}) u_{im} \right)$$

• Defining a dummy variable for simplicity

$$\mathbf{w'}_{\mathrm{m}} = \sum_{i=1}^{\mathrm{N}} \mathbf{w}_{i} \mathbf{u}_{i\mathrm{m}}$$

• The scalar flux becomes a simple summation of components

$$\phi(\mathbf{x}) = \sum_{m=1}^{N} \varphi_m(\mathbf{x}) \mathbf{w'}_m$$

College of Engineering

Incident Flux and 'Boundary Iteration'

 The solution requires solving for N/2 unknown components of ψ(x) at boundaries and region interfaces. The simple inverse transformation allows for conversion between φ and ψ

$$\boldsymbol{\varphi}_{\mathrm{m}} = \mathbf{u}_{\mathrm{m}}^{-1} \boldsymbol{\Psi}$$

• Using this, we can guess the half unknown components of the incident flux and iterate by replacing the guesses with values of φ found analytically

Boundary Iteration vs Source Iteration

- Power Iteration methods with DD schemes, for instance, require a standard Transport Sweep to converge on a solution
- The Semi-Analytical method proposed only requires iteration on boundaries and region interfaces, meaning there is a dramatic reduction in CPU time, despite the large number of equations being solved
- After converging on boundary values, the analytical solutions can be calculated simultaneously.
- With *E* denoting the <u>eigenvector matrix</u> of a given region (Left and Right), the simple interface scheme converges naturally with the boundary iteration

Program Hierarchy for the SA Solver

Start of program Allocate Matrix Storage and Solve for Region Constants Beginning of Semi-Analytic Iteration (SA) Loop on boundaries Calculate scalar flux at boundary meshes Check Boundary convergence, update values of $\boldsymbol{\phi}$ End boundary Loop Calculate all desired values of scalar flux using converged solutions End of SA End of program

Numerical Analysis (1/2)

• A one-region source problem

• Vacuum B.C. is applied on both sides

Numerical Analysis (2/2)

- Benchmarked to SI method with same mesh size and quadrature order
- Large edge-error typical of SI

Scattering Ratio c	SA Number	SA Time† [s]	SI Number	SI Time⁺ [s]	Relative Error*
0.1	3	0.048	9	0.050	8.07E-04
0.5	6	0.067	26	0.095	6.69E-04
0.9	15	0.155	143	0.381	4.04E-04
0.95	32	0.223	275	0.616	3.27E-04
0.99			463	1.005	
† Computations on an Intel i7 7700K w/ 32GB DDR5 RAM					

* Relative 2-normalized error between SI and SA flux

UCCOllege of Engineering

Heterogeneous Case Solution (1/2)

• A multi-region source problem w/ anisotropic scattering

	Region 1	Region 2	Region 3
S [cm ⁻¹ s ⁻¹]	0	1.0	2.0
σ_t [cm ⁻¹]	1.0	1.0	2.0
$\sigma_{s0}~[{ m cm}^{ extsf{-1}}]$	0.9	0.6	0.8
σ_{s1} [cm ⁻¹]	0.8	0.3	0.8
<i>x</i> [cm]	$0 \le x < 10$	$10 \le x < 17$	$17 \le x \le 20$

 Vacuum B.C. is applied on R.H.S, Incident Flux on L.H.S. so that ψ(L)=1.0 for μ>0

Heterogeneous Case Solution (2/2)

- Benchmarked to SI method with same mesh size and quadrature order
- Convergence Tolerance $\varepsilon = 10^{-7}$

- Natural convergence at interfaces
- Some error at region interfaces

ge of Engineerina

• In this case, SA is ~10x faster than SI

Distinctions of Our Method

- Analytic characteristic removes spacial discretization errors
- Simple implementation in 1D case with various conditions
- Uses linear algebra (eigenvalues) and standard 1st ODE solutions
- Bypass time-inefficient transport sweeps and source iteration
- Apply to *k*-eigenvalue problems
- Straightforwardly expands to multigroup and anisotropic scattering cases
- Potentially expanded to multi-dimensional cases

Future Work

- Currently comparing similar methods involving RTE's and BNTE's
- K-eigenvalue criticality and two-group case possible to implement
- Two Dimensional case is achievable using Gauss-Legendre discretization, for Cartesian and spherical/cylindrical geometries
- Benchmarking using published examples (see Barros & Larsen, 1990)
- Method requires use of basis-vectors of asymmetric ill-conditioned matrix, resulting in negative eigenvalues and divergent behavior with a scattering ratio c > 0.97
- Requires work on variable storage optimization to reduce total CPU time

Summary

- The Semi-Analytical (SA) method is a simple solution to the 1D S_N transport problem using decoupled linear ODE's through <u>eigen-vector expansion</u> of a scattering coefficient matrix
- Solution of the ODE's are found for the given boundary conditions
- Numerical results are presented to demonstrate the preliminary feasibility of the SA Method and subsequent modifications
- Problems and future additions to the project were discussed