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ABSTRACT 

 
In this paper, we develop a semi-analytical solution for the one-dimensional discrete-ordinate (i.e., SN) neutron 
transport equation by decoupling the in-scattering source using method of eigenfunction expansion. Conventional 
source iteration (SI) methods are usually employed in solving the SN transport equation because the angular flux for 
any direction in the SN equation is coupled with all angular fluxes from the equation’s within-group in-scattering 
source term. By using a linear transformation technique, we aim to decouple the in-scattering operator in the 
transport equation and seek an accelerated solution by precluding the SI procedure. As a preliminary attempt, the in-
scattering operator is decoupled with eigenfunction expansion which leads to a series of modified SN equations that 
can be readily solved analytically in each problem domain. A numerical example demonstrates the accuracy, 
efficiency and other advantageous features of the proposed solution. Eliminating source iteration would significantly 
increase computational speed, however, the use of even-order Gauss-Legendre quadrature sets presents challenges in 
resolving the angular-spectra with unknown boundary conditions, even in the simple one-dimensional one-region 
slab-geometry case with vacuum boundaries. Our proposed solution requires iteration to find the angular-flux 
components at the region boundaries. As finer nodal-meshes degrade the convergence time of the previously 
mentioned iterative solutions, this drawback is relatively insignificant so long as the quadrature order is minimized.  
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1. INTRODUCTION 
 
With standard notations, the one-dimensional multigroup discrete-ordinate (i.e., SN) k-eigenvalue 
transport equation is described as 
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where the lth angular flux moment ( )lg xφ is given by 
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The group-to-group scattering source and fission source can be assumed to be a known quantity 
under the framework of power iteration method in the k-eigenvalue transport solver. Thus, the 
remaining focus would be to solve the flux at group g, if we denote 
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Eq. (1) is reduced to 
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As indicated in Eq.(2), the flux moment (if l = 0, it became the group scalar flux) appearing in 
the scattering source term is constructed with angular fluxes of all direction. Because of this 
angular flux coupling, Eq.(4) is commonly solved with the source iteration (SI) technique, which 
sometimes is very slow to converge. Here we propose a linear transformation technique that can 
decouple the within-group in-scattering operator from Eq.(4) and yield equations only involving 
individual angular components. By working this way, the conventional time-consuming source 
iteration process can be completely eliminated. Furthermore, the resulting equation produces 
accurate solutions without any spatial discretization errors and can be solved efficiently with 
analytical techniques. 
 
 

2. LINEAR TRANSFORMATION OF THE SOURCE PROBLEM 
 
Whilst deriving the proposed equations simply yet generously, we consider the SN transport 
equation with the angular flux moment only up to l=1, 
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For brevity, we drop off the subscript g for the energy group, and simplify the equation to a one-
group formulation as follows 
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Here we emphasize the equation only represents angular flux in one direction by showing the 
total number of the equations is N - the number of quadrature sets used in the SN method. 
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Assuming homogeneous material in a cell i within the domain 1/2 1/2i ix x x− +< < , we may write the 
SN transport equation in the cell as 
 

 0 ' ' 1 ' '
' 1 ' 1

( ) 1 3
( ) ( ) ( ) ( ),       1, ,

2 2

N N
i i im

m t m s m m s m m m m
m m

x
x w x w x S x m N

x

ψ
µ ψ ψ µ µ ψ′

= =

∂
+ Σ = Σ + Σ + =

∂
∑ ∑               (8) 

 
Eq.(8) can be re-written as 
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If we write the angular flux of all SN directions into a vector with the dimension N, 
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Eq.(9) can be expressed as a matrix form as follows 
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and the coefficient matrix iA  appeared in Eq.(11) is associated with cell i and represents 
 

0 1 1 1 1 1 0 2 1 1 2 2 0 1 1
1 1 1

0 1 1 2 1 1 0 2 1 2 2 2 0 1 2
2 2 2

1 1 3 1 1 3 1 1 3
2 2 2 2 2 2

1 1 3 1 1 3 1 1 3
2 2 2 2 2 2

i i i i i i i
t s s s s s N s N N

i i i i i i i
s s t s s s N s N Ni

w w w w w w

w w w w w w

µ µ µ µ µ µ
µ µ µ

µ µ µ µ µ µ
µ µ µ

     Σ − Σ − Σ − Σ + Σ − Σ + Σ     
     

     − Σ + Σ Σ − Σ − Σ − Σ + Σ     =      A





  

0 1 1 1 1 0 2 1 2 2 0 1
1 1 3 1 1 3 1 1 3

2 2 2 2 2 2
i i i i i i i
s s N s s N t s N s N N N

N N N

w w w w w wµ µ µ µ µ µ
µ µ µ

 
 
 
 
 
 
 
 

      − Σ + Σ − Σ + Σ Σ − Σ − Σ            





 
 
 



English and Wu 
 

Proceedings of the PHYTRA4 Conference, Marrakech, Morocco, September 17-19, 2018 
 

4/10 

 

The basic idea of decoupling the scattering operator is to linearly transform the angular flux into 
the eigenfunction space of the N N× coefficient matrix iA .  Assuming the eigen-vectors of 

iA are  ( 1, )m m N=u   with the associated eigenvalue mλ  so that 
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One can express the angular flux vector ( )xψ shown in Eq.(10) as a linear combination of mu   
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Where the coefficients ( )m xϕ  are to be determined. The vector b in the source term can also be 
expressed in the same manner 
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By substituting Eq.(14) and (15) into Eq.(11), we arrive at the following equations 
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With a minor manipulation, the equations can be written into the following form 
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Since   ( 1, , )m m N=u   are independent basis vectors of the eigen-space of the matrix iA , 
Eqs.(17) hold if and only if  
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Eqs.(18) are the resulting decoupled equations, in which each individual equation is linked to its 
individual angular component and can be solved analytically. In the next section, we will discuss 
the procedure to obtain the solutions in Eq.(18) and demonstrate how these solution can be used 
to construct the real angular flux using Eq.(14). 
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3. ANALYTICAL SOLUTION 

 3.1 Solving the Eq.(18) Analytically 
Though the direction cosine mµ  is not explicitly contained in the Eq.(18), to solve the equation 
analytically for a one-dimensional slab, we must consider the solutions for the 0mµ <  and 

0mµ >  cases separately because different boundary condition may be imposed for each case. For 
simplicity, we truncate the proceeding equations by withholding the range for m. Rearranging 
Eq.(18) and applying an integrating factor mxeλ  gives 
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Next, we integrate from 0 to x ( 0mµ > ), leaving 
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( )mL xϕ is the boundary value at the leftmost cell-edge or any left hand sub-region interface, 

assuming +x is towards the right of the slab. Subscript R represents the right side. Note that the 
solution of Eq.(18), ( )m xϕ , is not the ‘real’ angular flux for the problem; it has been dubbed the 
‘fake’ angular flux due to satisfying the resulting modified transport equation and the linear 
transformation of scattering operator. The boundary values ( )mL xϕ  and ( )mR xϕ  are currently 
unknown due to their coupling with the angular flux, which has unknown incident components. 
We will discuss the solution methodology for the boundaries later in the section. For now, we 
treat them as knowns. The equations account for both a homogenous source term and a source-
free region. Integrating from x to L ( 0mµ < ) gives 
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where L is the total length of the slab, and mRϕ is the boundary value at the rightmost cell-edge 
or any right hand sub-region interface. Solving each equation for ( )m xϕ in Eq. (20) and (21) 
yields the ( )m xϕ solutions for 0mµ > and 0mµ <  respectively     
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Notice that the component variables are all knowns except for our boundary values, thus the 
analytic solutions for ( )m xϕ  are readily achieved assuming the boundary values are known. 

3.2 Forming the scalar flux 
Solving Eq.(18) for the ‘fake’ angular flux ( )m xϕ  is not our ultimate goal; we use it to form the 
angular flux ( )m xψ  and subsequently the scalar flux ( )xφ . Because the angular flux is a linear 
combination of the ‘fake’ angular flux and the eigenvector  ( 1, )m m N=u    of matrix iA   as 
seen in Eq.(14), it provides us a means to construct the angular flux solutions. We define the 
scalar flux at any point x using Eq.(6). 
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Because the combination of eigenvector mu  with  ( )m xϕ  requires specific matrix indexes, we 
denote the eigenvector component index as imu , where i is the vector index corresponding to 
each quadrature value and m is the coupled vector to each eigenvalue. By combining Eq.(24) and 
Eq.(14), we get 
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For simplicity, we introduce another region-dependent dummy variable 'mw  to combine the 
constant eigenvectors and weight vector linearly so that 
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The scalar flux can now be simplified to  
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4. IMPLEMENTATION AND THE BOUNDARY PROBLEM 
 
The formation of the scalar flux from Eq. (27) is trivial using nested loops once all values of 

( )m xϕ are known. For any arbitrary number of sub-regions with different cross-section 
properties, the scattering operators and their corresponding eigenvectors, eigenvalues, and the 
values of b  (see Eq.(15)) can be found initially and stored with little cost. Note that 
normalization of the scattering operator eigenvectors is still accurate for this method. 
 
To find the ‘fake’ angular flux, conventional transport sweeps can be applied in the directions  

0mµ >  then 0mµ < , respectively, calling the stored values when needed using the solutions in 
Eq.(22) and Eq.(23) depending on the inclusion of a source.  
 
We discretize the regions into a nodal mesh of arbitrary density. To eliminate truncation errors, 
we work on the node centers. We now focus on how to find the unknown boundary conditions 
for the ‘fake’ angular flux at the slab boundaries. 
 
4.1 Iteration on the Boundaries 
 
We named this decoupled scattering transformation a ‘semi-analytical’ (SA) method because the 
solution is still based on SN transport formulation and requires an iterative loop to converge onto 
the complete boundary condition using a form of forward substitution. As a proof of feasibility of 
the proposed method, our code solved the problem for a one-region case with vacuum 
boundaries on each side of the slab, namely the incoming angular flux is zero at each side. Since 
the ‘fake’ angular flux is constructed from the real angular flux in the entire direction domain 
(see Eq.(14)), we make an initial guess for each unknown components of ψ  at the left and right 
vacuum boundaries as visualized in Fig. 1 below. 
 

 
Figure 1. Example mesh. 

 
We next decompose the vectors bcψ  at the left and right boundaries into their components of 
‘fake’ angular flux using Eq.(14) so that (0)m mLϕ ϕ=  and ( )m mRLϕ ϕ= . The set of mLϕ  and 

mRϕ  are the initial boundary conditions to solve for ( )m xϕ  using the solutions in Eq.(22) and 
Eq.(23).  We transport sweep to the right side vacuum boundary solving for the N/2 values of 

( )m xϕ  ( 0mµ > ) at the node centers using Eq.(22); the number of points x depends on the 
selected node density.  Once at the right boundary, we replace the values of ( )m Lϕ  for 0mµ >  
with the values we just solved for. We now sweep from x = L back to 0x =  for the other N/2 
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values of ( )m xϕ  ( 0mµ < ) using Eq.(22), executing the same replacement method as before, 
except now we apply the new values of Lmϕ  at the left boundary. After the one sweep, we can 
construct the angular flux using Eq.(14) at the boundaries, reapply the known values (zero for 
vacuum) and check the convergence. When forming the angular flux, the known incident flux 
components must be set to zero due to vacuum boundary conditions. We use relationship for the 
two-norm error of the two non-zero boundary angular flux vector components as the 
convergence criterion for the boundary angular flux 
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( 1)
2

bc

n n
bc bc

n
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ε
ψ ψ

ψ

+
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Where (n) represents the older sweep. Once the values converge ( 610ε −≤ , for our case), the 
angular flux and subsequently the scalar flux for every node can be calculated. If the flux is not 
converged, we decompose the boundary angular flux into their ‘fake’ phi components as before 
and repeat the process until the converged solutions are achieved. 
 
 

5. NUMERICAL RESULTS 
 
To evaluate the viability of our method, we compared the results from our method with the 
solutions yielded from the standard SI method with Diamond-Difference. A single region 
problem is considered with a total cross section of 2.0tΣ = [cm-1], a scattering ratio of 0.9c = , 
and a slab width of 20L =  [cm]. Vacuum boundaries are imposed on both sides. Constant 
external source is assumed everywhere in the region. Only an isotropic scattering source is 
considered at this time, but the method should be easily extended to the anisotropic scattering 
case. Fig. 2 depicts the flux results yielded from both methods.  
 

 
 

Figure 2. Flux distribution. 
 

The relative two-norm error between the methods for a 2000 cell mesh is E4.041 -4= , which 
indicates they are effectively identical solutions. Since the difference of the two results are 
essentially indistinguishable, it verifies the viability of the proposed method. However, 
noticeable error occurs approaching the boundaries. Fig. 3 provides zoomed plots of the relative 
error between the SI reference case and our SA method.  
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Figure 3. Flux Discrepancy at Boundaries 
 

As our initial motivation of the semi-analytic solution is to reduce the computation cost by 
precluding the source iteration process in the transport solver, we checked how various scattering 
ratios effected the computation speed and iteration number for both methods with a mesh size of 
2000. The data is presented in Table I. 
 

Table I. Computational results: speed of SA and SI methods 
 

Scattering 
Ratio c 

SA 
Number 

SA 
TimeϮ 

[s] 

SI 
Number 

SI 
TimeϮ 

[s] 

Relative 
Error* 

0.1 3 0.048 9 0.050 8.07E-04 
0.5 6 0.067 26 0.095 6.69E-04 
0.9 15 0.155 143 0.381 4.04E-04 

0.95 32 0.223 275 0.616 3.27E-04 
0.99 

  
463 1.005 

 Ϯ Computations on an Intel i7 7700K w/ 32GB DDR5 RAM 
* Relative 2-normalized error between SI and SA flux 

 
As shown in the table, the SA method in general shows some computational cost reduction 
compared to the SI method. The total iteration number required for the boundary flux is 
consistently much less than the one needed in the SI procedure. At lower scattering ratios, the 
two methods require comparable time, but SA requires fewer iterations. For a scattering ratio 

0.9c =  or 0.95, the speed advantages of our method are apparent. The method is between two to 
three times faster. However, we do not have a results comparison for c = 0.99 at this stage 
because a negative angular flux is observed at the boundaries which eventually diverges the 
solution in this case. We are still working on this issue and hope the updated results will be 
available in the final paper. As our method essentially relies on analytic solutions for spatial 
variables, theoretically it should have no discretization errors in space. This salient feature of the 
proposed method is demonstrated with the results shown in Fig. 4. 
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Figure 4. Comparison of the spatial discretization errors. 
 

As can be seen, the truncation error due to spatial discretization increases significantly from the 
0.01x∆ = [cm] case to the 1.00x∆ =  case for the SI method, while for the SA case, the error is 

negligible for all different x∆ ; it peaks at E8.362 -13= . While the flux solution is normally 
found at the node centers in the code, to compare different node sizes, the cases with reduced 
node numbers must be a factor of 2000 and be additionally calculated then compared on node 
edges so that the positions overlap. The small error is likely caused by the final update of the left 
edge flux within the iteration, as the cell edge flux was calculated outside the iterative loop only 
after the final boundary flux values were found.   

 
 

6. CONCLUSIONS  
 
For the simple single-region case, the accuracy of the SA method is independent of truncation, 
and it is noticeably faster with scattering ratios up to 0.9c ≈ . Another benefit of the SA method 
is that the iteration only occurs at the slab boundaries; the speed will be independent of the 
number of regions included in the problem, possibly apart from included vacuum regions.  
 
Future additions to this project will include various boundary types and analysis of the multi-
region scenario. Inclusion of a multi-region case will be potentially complicated; the interface 
values are dependent on the material properties of both adjacent regions. We will further extend 
the method to the multigroup formulation with general anisotropic scattering cross sections, and 
apply the method to k-eigenvalue problem as well. 


	A SEMI-ANALYTIC SOLUTION ON THE 1D SN TRANSPORT EQUATION BY DECOUPLING THE IN-SCATTERING OPERATOR
	ABSTRACT
	1. INTRODUCTION
	2. LINEAR TRANSFORMATION OF THE SOURCE PROBLEM
	3. ANALYTICAL SOLUTION
	3.1 Solving the Eq. Analytically
	3.2 Forming the scalar flux

	4. IMPLEMENTATION AND THE BOUNDARY PROBLEM
	5. NUMERICAL RESULTS
	6. CONCLUSIONS

