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INTRODUCTION 

Adjoint-based general perturbation theory (GPT) has 
been widely used to perform nuclear data (i.e., cross-
sections) sensitivity analysis (SA) in reactor physics [1-3]. 
A general definition of SA may be found in a number of 
references, see for example Saltelli’s definition [4]. In our 
context, SA is as a mathematical procedure designed to 
estimate the derivatives of model output responses with 
respect to the model’s input parameters. Because GPT can 
calculate a given response variation resulting from general 
parameter perturbations, GPT-based SA is considered 
computationally superior to forward SA when the number 
of responses of interest is relatively small compared to the 
number of input parameters. However, when the number of 
responses is large, GPT becomes computationally taxing 
due to the large number of adjoint calculations needed. 
This follows as one generalized adjoint flux is required for 
each response of interest.  

The goal of the GPT-free method is to devise an 
approach that enables models to calculate the sensitivities 
of generalized responses relying only on the eigenvalue 
sensitivities obtained using the solution of the 
homogeneous adjoint eigenvalue problem. GPT-free is 
based on the idea that the eigenvalue is implicitly 
dependent on all generalized responses, representing 
functionals of the flux vector, which implies that the 
sensitivities of generalized responses with respect to cross-
sections can be linearly related to eigenvalue sensitivities. 
In GPT-free method, reducing order modeling (ROM) is 
employed to identify the so-called active subspace in the 
input parameters space via random sampling of model’s 
input parameters and re-evaluation of the homogeneous 
adjoint eigenvalue problem. This subspace is subsequently 
explored for sensitivity information of generalized 
responses using forward sensitivity analysis approach. In 
doing so, GPT-free method precludes the need to construct 
the response-specific inhomogeneous adjoint equation, 
referred to as the GPT equations. This salient feature of the 
GPT-free method makes it particularly suitable for 
sensitivity analysis application in large scale models, 
where the construction of GPT equations is either 
infeasible or impractical. 

The GPT-free method was formerly employed to 
achieve this goal in deterministic radiation transport 
models [5] and Monte Carlo models [6, 7]. The application 

of GPT-free method in deterministic models is quite 
successful because the sampling of the eigenvalue 
sensitivity coefficients can be accomplished in a 
manageable computation time after efficiently reducing the 
effective dimensionality of the input parameters space. 
With the reduced dimension being much smaller than the 
original number of input parameters, one could justify the 
use of forward SA thereby precluding the need to set up the 
GPT equations. Earlier work has demonstrated the 
application of GPT-free to the estimation of generalized 
response variations [6, 7]. In this summary, we present new 
results on GPT-free for the estimation of the full energy-
dependent sensitivity coefficients for generalized 
responses. This capability is expected to enable the use 
Monte Carlo models for a wide range of engineering 
applications, previously done with deterministic models, 
e.g., uncertainty quantification and parameter inference.   

In the paper, the GPT-free method is implemented and 
tested with the open-source Monte Carlo code OpenMC 
[8]. Continuous-energy SA capabilities were recently 
developed in OpenMC [9]. The combination of iterated 
fission probability (IFP) and Contribution-Linked 
eigenvalue sensitivity/Uncertainty estimation via Track 
length importance CHaracterization (CLUTCH) methods 
enables OpenMC to calculate sensitivity coefficients for 
both the k eigenvalue and generalized responses (e.g., 
reaction rate ratios) via the conventional GPT 
methodologies popularized in deterministic transport 
community [1-4]. This makes the OpenMC an ideal tool 
for assessing the efficacy of the GPT-free method in 
estimating nuclear data induced sensitivity coefficients. In 
this work, the GPT-free approaches described in Ref. 5 and 
6 are applied in an OpenMC model and the energy-
dependent response sensitivities are calculated and 
compared with the results obtained from the OpenMC 
integrated GPT modules developed upon the IFP and 
CLUTCH methods.  

OVERVIEW OF THE GPT-FREE METHOD 

The GPT-free method starts with the assumption that 
any generalized response can be expressed as a function of 
the flux and the input parameters, i.e., cross-sections.  

 ,  i iR R   , 1,2,....,i m ,  (1) 

921

Transactions of the American Nuclear Society, Vol. 118, Philadelphia, Pennsylvania, June 17–21, 2018

Reactor Analysis Methods—II



where iR  denotes a general response,  is cross-sections, 

and   is a vector of all flux values over the combined 

phase space of energy, space, and angle. In reactor physics, 
the k eigenvalue describes the neutron balance in a reactor 
core and is represented as a ratio of the neutron production 
and loss terms that are both functions of the flux values and 
the cross-sections, thus k can be written as 

 ,k k   . (2)

Note that unlike the responses, the eigenvalue depends on 
the flux values everywhere in the phase space, implying 
that every single neutron contributes to the multiplication 
of the system. The responses however could be localized 
in space and/or energy. Therefore, k may be implicitly 
related to all generalized responses of interest, described 
mathematically by: 

1( , , )mk k R R  .  (3)

Through the chain rule of differentiation, it is easy to show 
that the derivative of k with respect to cross-sections, 
commonly referred to as the k sensitivity vector (or profile), 
is a linear combination of all responses’ sensitivity vectors, 
that is, 

1

m
i

i i

dRdk k

d R d 




 . (4)

The elements of the vector dk d  represent the first order 

derivatives of k with respect to cross-sections. Similarly, 

the vector idR d  contains the sensitivity coefficients for 

the ith response, and idk dR is a scalar quantity 

representing the derivative of k with respect to the ith 
response. 

Therefore, considering a subspace described by 

1 2span , ,....., nmdRdR dR

d d d  
   
 

  , (5) 

where n a vector length for the cross-sections, this subspace 
spans all vectors in the parameter space that can be 
described as linear combinations of the unknown responses 
sensitivity vectors. It has been reported repeatedly that in 
most realistic models the dimension of the subspace r is 
much smaller than the dimension of the cross-sections n 
[10, 11]. The calculus definition of the gradient implies that 
any parameter perturbations that are orthogonal to this 
subspace will be orthogonal to all responses sensitivity 
vectors as well as the k eigenvalue sensitivity vector, and 
hence are expected to produce zero response variations. 
Hence, if r is small and one can easily identify the subspace
 , a forward SA could be employed instead of a GPT
approach to calculate responses sensitivities. In this case, 
the effective number of input parameters is reduced to r and 
hence the computational cost will be proportional to r 
rather than n. This reveals the basic idea behind the GPT-
free methodology. 

It is important to note that in practice whenever cross-
sections are varied, the responses are expected to change. 
In our context, zero response change implies that the 
change is negligibly small. Therefore, it is important that 
the user defines the accuracy sought for the sensitivities 
which is used by the GPT-free algorithm to determine the 
appropriate dimension of the active subspace . Moreover,
an error analysis ensuring that all sensitivities are estimated 
within the user-defined accuracy must be carried out. The 
implementation of GPT-free method typically involves 
three steps: the estimation of the active subspace   via the
so-called range finding algorithm (RFA); the error analysis 
resulting from restricting parameter perturbations to the 
subspace; and finally the forward-based SA to determine 
response sensitivities.  

GPT-FREE APPLICATION IN OPENMC 

Godiva, a fast spectrum criticality benchmark problem 
model, is used as a test bed for the application of GPT-free 
method in OpenMC. Godiva is a bare metallic sphere of 
highly enriched (94 wt.%) Uranium. Godiva sphere 
benchmark contains isotopes 234U, 235U and 238U, and has a 
radius 8.74 cm. To assess the GPT-free method, the IFP 
module in OpenMC is used to calculate k eigenvalue 
sensitivity w.r.t to the fission cross section of 235U while 
the CLUTCH-FM module is used to calculate sensitivities 
of a generalized response of interest. Without loss of 
generality, the generalized response function considered in 
this work is defined as Eq. (6), namely a ratio of integrated 
fission reaction rates of two fissionable nuclides, 235U and 
238U. This quantity is of interest in determining the fast 
neutron utilization factor, one of the important factors in 
the famous four-factor formula used to estimate the neutron 
multiplication factor of a reactor. The standard SCALE 44 
energy-group structure [12] is utilized in the perturbation 
and sensitivity profile calculations, while the 300K 
ENDF/B-VII.1 library is used as the input neutron cross 
section data for OpenMC simulation. 

238

235

U

U

f

f

R








 . (6) 

The standard GPT-free algorithm is performed on the 
Godiva model, with the steps detailed below. Note the 
cross section perturbations in this work are achieved by 
adding noise to the fission cross section of 235U in each 
group from a Gaussian distribution (the relative standard 
deviation 2%), as described in Eq. (7) 

pert 0=  
  

, (7)

where pert 0, ,      
denote the perturbed cross section,

reference cross section and the randomly imposed noise to 
the base value, respectively.  

To proceed, randomly generated cross section 
perturbations are employed to perform k-sensitivity 
calculations using OpenMC. According to Eq. (5), the 
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subspace matrix   can be constructed from the energy-
group-wise k-sensitivity coefficients, followed by 
identifying a subspace or ROM through QR decomposition 
described in Eq. (8). 

,    and r r n r
r r r r

   Q R R Q   . (8) 

Following the RFA in Ref. 12, a reduced rank of r = 12 is 
estimated to limit the associated errors in the k eigenvalue 
resulting from the reduction. This is done via a comparison 
of variations of k eigenvalue with two cross section 
perturbations,    and   , which is really ( )T

r r Q Q


.

The latter represents the component of the cross-section 
perturbation that belongs to the active subspace, with the 
remaining component representing the one that is 
discarded by the ROM model. If the ROM model and its 
associated rank are selected appropriately, the discarded 
components should have negligible impact on the 
estimated k eigenvalue and other responses of interest. Fig. 
1 shows the results of an example comparing the ROM 
model predictions to 50 direct perturbations without any 
reduction. The circle (red) and plus (blue) symbols in Fig. 
1 represent the changes of the keff value in the two perturbed 
conditions respectively while the cross signs show their 
differences. It is noteworthy to mention that the statistical 
errors caused by the Monte Carlo simulation were 
purposely controlled to be negligibly small in all 
calculations performed in this study to ensure no cross-
contamination of the ROM construction process. 

Fig. 1. Validation of ROM with k perturbations. 

As seen in Fig. 1, the variations of the keff value for the 
ROM case accurately approximates the one in the direct 
perturbation case, which indicates 

0 0( ) ( )k k          
. (9)

The implication is that an ROM with an effective rank 
=12r  nearly captures the dominant directions of cross-

sections variations.  

Next, the sensitivity of a generalized response R was 
estimated using the GPT-free theory [5-7]. We create new 
N set of randomly generated cross sections perturbations, 
and execute the forward model N times using OpenMC and 
determine the changes in the response as described in Eq. 
(10). 

0 0( ) ( ),  1,...,i iR R R i N       
  

. (10)

The response sensitivity can then be evaluated by 

†= ( )T
r

dR

d
Q Γ R


 , (11)

where 

1[ ,..., ],   ,  1,..., .T
K i r i i N      Γ Q

   
 (12) 

For comparison, the same response sensitivity was 
calculated using the GPT module developed in OpenMC. 
Fig. 2 illustrates the 44-group-wise sensitivity coefficients 
obtained from the two approaches. Note the response 
sensitivities shown in the figure has been transformed into
a dimensionless form (i.e.,  / / ( / )dR R d  

). As seen in

Fig. 2, the two group-wised sensitivity coefficient curves 
yielded by OpenMC GPT capability and the GPT-free 
method agree quite well. 

Fig. 1. Comparison of group-wised sensitivity coefficients 
of a generalized response with GPT and GPT-free. 

Alternatively, the performance of the GPT-free 
method can be assessed using the variation of response. To 
demonstrate it, we generate another 50 randomly generated 
cross sections perturbations. The perturbed responses are 
first tallied using forward calculations for reference. In the 
same time, the response sensitivities obtained from both 
the GPT and GPT-free approaches are used to predict the 
response variations described in Eq. (13). 

=( )T
SA

dR
R

d



 


 , (13)

where 
dR

d
 was again obtained by Eq.(11). The results of

the three approaches described above are plotted in Fig. 3, 
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in which the plus and asterisk symbols describe the 
absolute errors of predicted response variations using GPT-
free and GPT approaches respectively. Fig. 3, as consistent 
to Fig. 2, verifies that both approaches estimate response 
sensitivity accurately.  

Fig. 2. GPT-free accuracy for response variations. 

It is also observed in Fig. 3 that the GPT-free results are 
even closer to the reference perturbation values as 
compared to the GPT method. To explain that, we recall 
two facts. First, the traditional GPT approach calculates 
response variations using first-order approximations, 
implying that nonlinear variations are discarded. Second, 
the range finding algorithm employed to construct the 
ROM model is based on sampling of the k-sensitivity 
vector. The implication is that the active subspace will 
capture directions responsible for nonlinear behavior, 
because if the model is perfectly linear, the k-sensitivity 
vector will not change. This reveals one of the key features 
of GPT-free that it is capable of identifying an active 
subspace that captures both linear and nonlinear variations. 
Therefore, if coupled with an effective forward-based SA, 
e.g., variance-based decomposition, it can be used to
capture nonlinear variations in a computationally efficient
manner.

CONCLUSIONS 

This paper summarized recent research efforts to 
extend the GPT-free method, a computationally efficient 
method for sensitivity coefficients evaluation, to the 
OpenMC code. The goal is to enable an efficient 
computation of sensitivity coefficients when the number of 
responses is too large to render the GPT approach 
computationally feasible. GPT-free achieves that by re-
casting SA using a forward-based approach with much 
smaller input space, determined using ROM techniques. 
The reduced space, denoted active subspace, is selected by 
sampling the k-sensitivity vector a number of times which 

allows one to constrain the errors resulting from discarding 
all input parameters components that are orthogonal to the 
active subspace. Results indicate the GPT-free 
methodology is capable of estimating the sensitivity 
coefficients to the level of accuracy expected by the ROM 
model, which can be tuned to user-selection. Future work 
will extend GPT-free work to depletion problems as an 
alternative to depletion perturbation theory (DPT), which 
has proven to be even more computationally demanding 
than GPT, because its cost becomes proportional to the 
square of the number of time steps required to complete 
depletion calculations.  
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