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Pyroprocessing Technology

Oxidation and Reduction 
Reactions

M. F. Simpson, J. D.
Law, “Nuclear Fuel
Reprocessing”, Fuel
Cycle Science and
technology Division,
Idaho National
Laboratory (2010),
INL/EXT-10-17753.
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Experimental Uranium Cyclic Voltammogram (CV)
CV of 1 wt% UCl3 in LiCl-KCl at Various Scan Rates

R. O. Hoover, M. R. Shaltry, S. Martin, K. Sridharan, and S. Phongikaroon, “Electrochemical
studies and analysis of 1–10 wt% UCl3 concentrations in molten LiCl–KCl eutectic”, Journal
of Nuclear Material, 452 (1-3), pp. 389-396 (2014).



Motivation
 There are diverse software package, which can provide the current versus potential
diagram within ER for CV method. However, predicting the trace of species without
experimental data sets in a short time has become a huge concern and a great need in
nuclear material detection and accountancy.

Objective
 Develop a modified computational model (diffusion model) to predict less complex

CV data sets in a short time (less than 2 minutes), such as uranium chloride;
 Implement ANI on massive experimental data sets of more complex CV, such as

zirconium chloride;
 Verify the ANI’s concept by considering the uranium chloride data sets;
 Compare the effectiveness of both methods to deliver the best methodology for

rapid concentration detection and measurement for CV graphs.



Approach
 Diffusion Model
 Tracing the trend of each element in the absent of experimental data through

the current versus potential;
 Calculating the concentration of each species at each time step; and
 Predicting the CV plot with a blind input information.
Artificial Neural Intelligence
 Implementing ANI through iterations and interrelationships among system

variables such as scan rate, potential, current, process time, and weight
percent for complex CV systems; and

 Determining the adequate number of neurons (1 to 30), hidden layers (one to
three), and validation checks (1 to 30) to find the minimum average percent
error between experimental and predicted data.



(a) Diffusion Model (1/2)
Computational Methods and Procedures:

Diffusion Coefficient and Current Calculation
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- A: Working electrode surface area (cm2)
- C: Initial concentration (mol/cm3)
- D: Diffusion coefficient (cm2/s)
- Ipc: Current od cathodic peak (amp)
- n: Number of electron (eq/mol)
- F : Faraday’s constant (96485 C/eq)
- R : Universal gas constant (8.314 J/mol.K)
- T : Temperature (K)
- υ : Scan rate (V/s)
- α : Transfer coefficient (0.5)

- C*o and C*R : Bulk Concentration of oxidant 
and reductant (mol/cm3)

- DR and Do : Diffusion coefficient of oxidant 
and reductant (cm2/s)

- Ei : Initial potential (V)



(a) Diffusion Model (2/2)
Results and Discussion

CV of 1 wt% UCl3 in LiCl-KCl at 100 mV/s

 The Average Root Mean Square Error (RMSE) 
for 100 mV/s

 Potential: 0.00764 
 Current:   0.01780

CV of 10 wt% UCl3 in LiCl-KCl at 200 mV/s

*** Irreversible Simulated Results
----- Reversible Simulated Results

Experimental Data sets
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(b) ANI (1/6)
Computational Methods and Procedures
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(b) ANI (2/6)
Computational Methods and Procedures:

Experimental Data Set for ZrCl4

 Training Data Set: Partial of
whole experimental data sets for
adjusting the weights and bias.

 Validation Data Set:
Independent data sets from
training sample to minimize the
overfitting.

Concentration
(mol/cm3)

Scan Rate (mV/s)

0.5 wt% 200
Train

250
Test

300
Train

350
Test

400
Train

450
Test

500
Train

1 wt% 150 
Train

150
Test

200
Train

200
Test

250
Train

250
Test

300
Test

300
Test

350
Train

350
Test

2.5 wt% 100
Train

100
Test

150
Test

200
Test

250
Train

300
Train

300
Test

400
Test

500
Train

5 wt% 50
Train

50
Test

100
Train

100
Test

150
Train

150
Test

200
Train

200
Test

200
Test

250
Test

250
Test

300
Train

300
Test

Red = Focus 
of This 
presentation

Training
data sets

Test data
sets

• Total 
Experimental 
Data sets: 
231,765

• Total training 
data set: 43%

 Test Data Set: The left over data sets
that being simulated to assess the
system performance.

 Validation Checks (numbers): The
number of consecutive iterations that
system performance fails to decrease.

Overfitting Definition



(b) ANI (3/6)
Computational Methods and Procedures
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(b) ANI (4/6)
Computational Methods and Procedures
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(b) ANI (5/6)
Computational Methods and Procedures

Concentration
(mol/cm3)

Scan Rate (mV/s)

5 wt%
100

Train
150
Test

200
Train

250
Test

300
Test

350
Train

400
Test

450
Test

500
Train

600
Test

700
Test

800
Train

900
Test

1000
Train

2000
Train

7.5 wt%
200

Train
250
Test

300
Train

350
Test

400
Test

450
Test

500
Train

600
Test

700
Train

800
Test

900
Train

1000
Test

1100
Test

1200
Train

1300
Test

1400
Test

1500
Train

1600 
Test

1800
Train

2000
Train

10 wt%
200

Train
450

Train
500

Train
600
Test

700
Test

800
Test

900
Train

900
Test

1000
Test

1100
Train

1200
Test

1300
Test

1400
Test

1500
Train

1600
Test

1700
Test

1800
Train

1900
Test

2000
Train

2500
Train

2500
Test

3000
Train

3500
Test

4000
Train

Experimental Data Set for UCl3

• Total 
Experimental 
Data sets: 
353,823

• Total training 
data set: 49%



(b) ANI (6/6)
Results and Discussion:

CV Plot for ZrCl4 and UCl3 in LiCl-KCl Eutectic at 773 K with Final Structure 
[9, 15, 10]-18

RMSE: 0.003 RMSE: 0.0249 RMSE: 0.1586

0.5 wt% ZrCl4 at 450 mV/s 7.5 wt% UCl3 at 450 mV/s 10 wt% UCl3 at 1700 mV/s



(c) Comparison between Diffusion Model and 
ANI Method

 (a) RMSE: 0.091
 Time: 00:04

5 wt% UCl3 at 400 mV/s

 (b) RMSE: 0.014
 Time: 03:18

(a) Diffusion Model
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Future Work
Repeat the framework from first step on the other experimental data sets such as cerium

chloride to compare the final ANI structure; and
Comparative between Bayesian Regularization and Levenberg-Marquardt algorithms.
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 Samaneh Rakhshan Pouri, Supathorn Phongikaroon, “An Interactive Reverse-Engineering Cyclic
Voltammetry for Uranium Electrochemical Studies in LiCl-KCl Eutectic Salt”, Nuclear Technology,
Vol. 197, No. 3, pp.308-319 (2017).
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Thank you so much for your 
attention 

Any Question?
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