College of Engineering

Diffusion Model and Artificial Neural Intelligence (ANI) Comparison for Cyclic Voltammetry Prediction of Uranium and Zirconium Chloride in LiCI-KCI Eutectic Salt

#### Samaneh Rakhshan Pouri, Supathorn Phongikaroon, Zeyun Wu

American Nuclear Society Annual Meeting June 17-21, 2018 Marriott Philadelphia Downtown Philadelphia, PA, USA

Session Title: University Research in Fuel Cycle and Waste Management Location: Franklin Date and Time: Tuesday, June 19, 2018, 10:00 AM



## **Presentation Outline**

#### Background

- Motivation
- Objective
- Approach
- Diffusion Model
  - Computational Method and Procedure
  - Results and Discussion

#### □ Artificial Neural Intelligence (ANI)

- Computational Method and Procedure
- Results and Discussion

#### Comparison Between Diffusion Model and ANI Method





## **Pyroprocessing Technology**



## **Analytical Method for Material Analysis**







## Experimental Uranium Cyclic Voltammogram (CV)



R. O. Hoover, M. R. Shaltry, S. Martin, K. Sridharan, and S. Phongikaroon, "Electrochemical studies and analysis of 1–10 wt% UCl<sub>3</sub> concentrations in molten LiCl–KCl eutectic", *Journal of Nuclear Material*, **452** (1-3), pp. 389-396 (2014).

Department of Mechanical & Nuclear Engineering

College of Engineering

## Motivation

➤ There are diverse software package, which can provide the current versus potential diagram within ER for CV method. However, predicting the trace of species without experimental data sets in a short time has become a huge concern and a great need in nuclear material detection and accountancy.

## Objective

- Develop a modified computational model (diffusion model) to predict less complex CV data sets in a short time (less than 2 minutes), such as uranium chloride;
- Implement ANI on massive experimental data sets of more complex CV, such as zirconium chloride;
- Verify the ANI's concept by considering the uranium chloride data sets;
- Compare the effectiveness of both methods to deliver the best methodology for rapid concentration detection and measurement for CV graphs.





# Approach

#### Diffusion Model

- Tracing the trend of each element in the absent of experimental data through the current versus potential;
- Calculating the concentration of each species at each time step; and
- Predicting the CV plot with a blind input information.

#### Artificial Neural Intelligence

- Implementing ANI through iterations and interrelationships among system variables such as scan rate, potential, current, process time, and weight percent for complex CV systems; and
- Determining the adequate number of neurons (1 to 30), hidden layers (one to three), and validation checks (1 to 30) to find the minimum average percent error between experimental and predicted data.





#### (a) Diffusion Model (1/2) Computational Methods and Procedures: Diffusion Coefficient and Current Calculation

(1)

**Randles- Sevcik Equation:**   $D = \frac{I_{PC}^{2}RT}{(0.446nFAC)^{2} \cup nF\alpha}$  **Delahay Equation:**  $D = \frac{I_{PC}^{2}RT}{(0.496nFAC)^{2} \cup nF\alpha}$ 

- A: Working electrode surface area (cm<sup>2</sup>)
- C: Initial concentration (mol/cm<sup>3</sup>)
- **D:** Diffusion coefficient (cm<sup>2</sup>/s)
- I<sub>pc</sub>: Current od cathodic peak (amp)
- **n**: Number of electron (eq/mol)
- F: Faraday's constant (96485 C/eq)
- R: Universal gas constant (8.314 J/mol.K)
- T: Temperature (K)
- υ: Scan rate (V/s)
- α: Transfer coefficient (0.5)

#### Current Calculation:

$$i = nFAC_{R}^{*}\sqrt{\pi D_{R}\alpha\psi}\chi(\alpha\delta j)$$
 |rreversible (3)

$$i = nFAC_{O}^{*}\sqrt{\pi D_{O}\psi}\chi(\delta j)$$
 Reversible (4)

2) 
$$\psi = \frac{nF\upsilon}{RT} = (\frac{nF}{RT})(E_i - E)$$
 (5)

- **D**<sub>R</sub> and **D**<sub>o</sub>: Diffusion coefficient of oxidant  $\frac{1}{2}$  and reductant (cm<sup>2</sup>/s)
- E<sub>i</sub>: Initial potential (V)



## (a) Diffusion Model (2/2) Results and Discussion



#### (b) ANI (1/6) Computational Methods and Procedures Perceptron



$$\sum_{j} w_{j} x_{j} \leq threshold \rightarrow 0$$

$$\sum_{j} w_{j} x_{j} \geq threshold \rightarrow 1$$

 $\begin{cases} \sum_{j} w_{j} x_{j} + b \leq 0 \longrightarrow 0 \\ \sum_{j} w_{j} x_{j} + b > 0 \longrightarrow 1 \end{cases}$ 

Multi Layer Perceptron (MLP)



# (b) ANI (2/6)

#### Computational Methods and Procedures: Experimental Data Set for ZrCl<sub>4</sub>

| Concentration<br>(mol/cm <sup>3</sup> ) | Scan Rate (mV/s) |             |              |             |              |              |              |             |              |             | <b>Red</b> = Focus | • Total      |             |                         |                                                                  |
|-----------------------------------------|------------------|-------------|--------------|-------------|--------------|--------------|--------------|-------------|--------------|-------------|--------------------|--------------|-------------|-------------------------|------------------------------------------------------------------|
| 0.5 wt%                                 | 200<br>Train     | 250<br>Test | 300<br>Train | 350<br>Test | 400<br>Train | 450<br>Test  | 500<br>Train |             |              |             |                    |              |             | of This<br>presentation | Experimental<br>Data sets:<br><u>231,765</u><br>• Total training |
| 1 wt%                                   | 150<br>Train     | 150<br>Test | 200<br>Train | 200<br>Test | 250<br>Train | 250<br>Test  | 300<br>Test  | 300<br>Test | 350<br>Train | 350<br>Test |                    |              |             | Training<br>data sets   |                                                                  |
| 2.5 wt%                                 | 100<br>Train     | 100<br>Test | 150<br>Test  | 200<br>Test | 250<br>Train | 300<br>Train | 300<br>Test  | 400<br>Test | 500<br>Train |             | _                  |              |             | Test data<br>sets       | data set: <u>43%</u>                                             |
| 5 wt%                                   | 50<br>Train      | 50<br>Test  | 100<br>Train | 100<br>Test | 150<br>Train | 150<br>Test  | 200<br>Train | 200<br>Test | 200<br>Test  | 250<br>Test | 250<br>Test        | 300<br>Train | 300<br>Test |                         |                                                                  |

- Training Data Set: Partial of whole experimental data sets for adjusting the weights and bias.
- Validation Data Set: Independent data sets from training sample to minimize the overfitting.

eae of Engineering



- Test Data Set: The left over data sets that being simulated to assess the system performance.
- Validation Checks (numbers): The number of consecutive iterations that system performance fails to decrease.

VCII VIZGIAIA CAMMANWAAIIN VA

Department of Mechanical

& Nuclear Engineering

## (b) ANI (3/6) Computational Methods and Procedures



## (b) ANI (4/6) Computational Methods and Procedures

RMSE of test sample for four structures with 12 runs







## (b) ANI (5/6) Computational Methods and Procedures

| Concentration<br>(mol/cm <sup>3</sup> ) | Scan Rate (mV/s) |               |              |               |               |              |               |              |               |               |  |  |
|-----------------------------------------|------------------|---------------|--------------|---------------|---------------|--------------|---------------|--------------|---------------|---------------|--|--|
| 5 wt%                                   | 100<br>Train     | 150<br>Test   | 200<br>Train | 250<br>Test   | 300<br>Test   | 350<br>Train | 400<br>Test   | 450<br>Test  | 500<br>Train  | 600<br>Test   |  |  |
|                                         | 700<br>Test      | 800<br>Train  | 900<br>Test  | 1000<br>Train | 2000<br>Train |              |               |              |               |               |  |  |
| 7.5 wt%                                 | 200<br>Train     | 250<br>Test   | 300<br>Train | 350<br>Test   | 400<br>Test   | 450<br>Test  | 500<br>Train  | 600<br>Test  | 700<br>Train  | 800<br>Test   |  |  |
|                                         | 900<br>Train     | 1000<br>Test  | 1100<br>Test | 1200<br>Train | 1300<br>Test  | 1400<br>Test | 1500<br>Train | 1600<br>Test | 1800<br>Train | 2000<br>Train |  |  |
| 10 wt%                                  | 200<br>Train     | 450<br>Train  | 500<br>Train | 600<br>Test   | 700<br>Test   | 800<br>Test  | 900<br>Train  | 900<br>Test  | 1000<br>Test  | 1100<br>Train |  |  |
|                                         | 1200<br>Test     | 1300<br>Test  | 1400<br>Test | 1500<br>Train | 1600<br>Test  | 1700<br>Test | 1800<br>Train | 1900<br>Test | 2000<br>Train | 2500<br>Train |  |  |
|                                         | 2500<br>Test     | 3000<br>Train | 3500<br>Test | 4000<br>Train |               |              |               |              |               |               |  |  |

#### **Experimental Data Set for UCl<sub>3</sub>**

• Total Experimental Data sets: <u>353,823</u>

• Total training data set: <u>49%</u>





#### (b) ANI (6/6) Results and Discussion: CV Plot for $ZrCl_4$ and $UCl_3$ in LiCl-KCl Eutectic at 773 K with Final Structure

[9, 15, 10]-18



## (c) Comparison between Diffusion Model and ANI Method

5 wt% UCl<sub>3</sub> at 400 mV/s



## **Future Work**

Repeat the framework from first step on the other experimental data sets such as cerium chloride to compare the final ANI structure; and

Comparative between Bayesian Regularization and Levenberg-Marquardt algorithms.



## Acknowledgment

- > Funding support from the NRC Faculty and Development.
- > Department of Mechanical and Nuclear Engineering, VCU research Graduate Fellowship.
- > My Ph.D. advisor: Dr. Supathorn Phongikaroon.
- > My Postdoctoral advisor: Dr. Zeyun Wu.
- Colleague: Ammon Williams, Dalsung Yoon, Dumidu Shanika Wijayasekara, Hunter Andrews, Michael Woods, and Riyadh Monty.

## **Deliverables and Outcomes**

- Samaneh Rakhshan Pouri, Supathorn Phongikaroon, "An Interactive Reverse-Engineering Cyclic Voltammetry for Uranium Electrochemical Studies in LiCl-KCl Eutectic Salt", *Nuclear Technology*, Vol. 197, No. 3, pp.308-319 (2017).
- Samaneh Rakhshan Pouri, Supathorn Phongikaroon, Milos Manic, "A Novel Framework for Intelligent Signal Detection via Artificial Neural Networks for Cyclic Voltammetry in Pyroprocessing Technology", Annals of Nuclear Energy, Vol. 111, pp.242-254 (2017).





## References

- 1. D. YOON, "Electrochemical Studies of Cerium and Uranium in LiCl-KCl Eutectic for Fundamentals of Pyroprocessing Technology," Ph.D. Dissertation, Mechanical and Nuclear Engineering Department, Virginia Commonwealth University (2017).
- 2. Nuclear Technology Review 2016, Reported by Director General, GC (60)/INF/2.
- 3. J. L. WILLIT et al., "Electrorefining of Uranium and Plutonium- A Literature Review", Journal of Nuclear Materials, 195, 229-249 (1992).
- 4. J. HEINZE, "Cyclic Voltammetry- Electrochemical Spectroscopy", Angewandte Chemie International Edition, 23(11), 831-918 (1984).
- 5. R. O. HOOVER, "Uranium and Zirconium Electrochemical Studies in LiCl-KCl Eutentic for Fundamental Applications in Used Nuclear Fuel Reprocessing", Ph.D. Dissertation, Mechanical and Nuclear Engineering Department, Virginia Commonwealth University (2014).
- 6. R. O. HOOVER et al., "Electrochemical studies and analysis of 1–10 wt% UCl<sub>3</sub> concentrations in molten LiCl–KCl eutectic," *Journal of Nuclear Material*, **452** (1-3), 389-396 (2014).
- 7. A. J. BARD and L. R. FAULKNER, *Electrochemical Methods: Fundamentals and Applications*, Second Edition, Wiley (2000).
- 8. S. A. KUZNETSOV et al., "Electrochemical Behavior and Some Thermodynamic Properties of UCl<sub>4</sub> and UCl<sub>3</sub> Dissolved in a LiCl-KCl Eutectic Melt," *Journal of the Electrochemical Society*, **152**(4), C203-C212 (2005).
- 9. R. S. NICHOLSON, "Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics," *Journal of Analytical Chemistry*, **37**(11), 1351-1355 (1965).
- 10. SAMANEH RAKHSHAN POURI, "Comparative Studies of Diffusion Model and Artificial Neural Intelligence on Electrochemical process of U and Zr Dissolution in LiCl-KCl Eutectic Salts," PhD Dissertation, Mechanical and Nuclear Engineering Depatment, Virgnia Commonwealth University (2017).
- 11. S. LAHIRI AND K. C. GHANTA, "Artificial Neural Network Model with Parameter Tuning Assisted by Agentic Algorithm Technique: Study of Critical Velocity of Slurry Flow in Pipeline," *Asia-Pacific Journal of Chemical Engineering*, **15**(2), 763-777 (2010).
- 12. D. KRIESEL, "A Brief Introduction to Neural Networks," 2007, Available at http://www.dkriesel.com/\_media/science/neuronalenetze-en-zeta2-2coldkrieselcom.pdf.
- 13. D. WIJAYASEKARA et al., "Optimal Artificial Neural Network Architecture Selection for Performance Prediction of Compact Heat Exchanger with the EBaLM-OTR Technique," *Nuclear Engineering and Design*, **241**(7), 2549-2557 (2011).
- 14. A. RIDLUAN, et al., "EBaLM-THP-a Neural Network Thermo hydraulic Prediction model of Advanced Nuclear System Components," *Nuclear Engineering and Design*, **239**(2), 308-319 (2009).
- 15. A. S. PLANCHE and N. D. S. CORDEIRO, "A General ANN-Based Multitasking Model for the Discovery of Potent and Safer Antibacterial Agents," *Methods in Molecular Biology*, **1260**, 45- 64 (2015).
- 16. P. SIRIPHALA, "Controlling Artificial Neural Networks Overtraining When Data Is Scarce," Ph.D. Dissertation, Department of Industrial and Manufacturing Engineering, Wichita State University (2000).







# Thank you so much for your attention S

