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Self-Adjoint Angular Flux (SAAF) Transport Equation

• Advantages
– Second-order transport equation that is amenable to continuous finite element method (CFEM)
– CFEM generally results in matrix equations that are symmetric positive-definite (SPD)
– Boundary conditions are identical to those of the standard first-order transport equation (one-way 

coupling between incoming and outgoing fluxes)

• Disadvantages
– The SN source iteration equations cannot be solved with standard transport sweeping technique
– Hard to deal with problems with void regions

−�𝜴𝜴 ⋅ �𝛁𝛁
𝟏𝟏

)𝝈𝝈𝒕𝒕(�𝒓𝒓
)�𝜴𝜴 ⋅ �𝛁𝛁𝝍𝝍(�𝒓𝒓, �𝜴𝜴 + 𝝈𝝈𝒕𝒕 �𝒓𝒓 𝝍𝝍 �𝒓𝒓, �𝜴𝜴 = 𝑸𝑸 �𝒓𝒓 − �𝜴𝜴 ⋅ �𝛁𝛁

)𝑸𝑸(�𝒓𝒓
)𝝈𝝈𝒕𝒕(�𝒓𝒓

where 𝑸𝑸(�𝒓𝒓) = 𝟏𝟏
𝟒𝟒𝟒𝟒
𝝈𝝈𝒔𝒔(�𝒓𝒓)𝝓𝝓(�𝒓𝒓) + 𝟏𝟏

𝟒𝟒𝟒𝟒
𝑺𝑺(�𝒓𝒓) .

Ref: Morel et al., “A Self-Adjoint Angular Flux Equation,” NSE, 1999.



Derivation of the SAAF Equation
1. Start with the standard 1st-order transport equation

�𝜴𝜴 ⋅ �𝜵𝜵𝝍𝝍(�𝒓𝒓, �𝜴𝜴) + 𝝈𝝈𝒕𝒕(�𝒓𝒓)𝝍𝝍(�𝒓𝒓, �𝜴𝜴) = 𝑸𝑸(�𝒓𝒓)

2. Write the equation in a form that formally represents 𝝍𝝍(�𝒓𝒓, �𝜴𝜴)

𝝍𝝍(�𝒓𝒓, �𝜴𝜴) =
𝟏𝟏

𝝈𝝈𝒕𝒕(�𝒓𝒓) 𝑸𝑸 �𝒓𝒓 − �𝜴𝜴 ⋅ �𝜵𝜵𝝍𝝍(�𝒓𝒓, �𝜴𝜴)

3. Substitute the 𝝍𝝍(�𝒓𝒓, �𝜴𝜴) ‘solution’ back to the �𝜴𝜴 ⋅ �𝜵𝜵𝝍𝝍(�𝒓𝒓, �𝜴𝜴) term in the original 1st-order 
equation

�𝜴𝜴 ⋅ �𝜵𝜵 𝟏𝟏
𝝈𝝈𝒕𝒕(�𝒓𝒓)

𝑸𝑸 �𝒓𝒓 − �𝜴𝜴 ⋅ �𝜵𝜵𝝍𝝍(�𝒓𝒓, �𝜴𝜴) + 𝝈𝝈𝒕𝒕(�𝒓𝒓)𝝍𝝍(�𝒓𝒓, �𝜴𝜴) = 𝑸𝑸(�𝒓𝒓)

4. After some manipulation

−�𝜴𝜴 ⋅ �𝜵𝜵
𝟏𝟏

𝝈𝝈𝒕𝒕(�𝒓𝒓) �𝜴𝜴 ⋅ �𝜵𝜵𝝍𝝍(�𝒓𝒓, �𝜴𝜴) + 𝝈𝝈𝒕𝒕(�𝒓𝒓)𝝍𝝍(�𝒓𝒓, �𝜴𝜴) = 𝑸𝑸 �𝒓𝒓 − �𝜴𝜴 ⋅ �𝛁𝛁
)𝑸𝑸(�𝒓𝒓
)𝝈𝝈𝒕𝒕(�𝒓𝒓



Derivation of the Modified SAAF Equation
1. Start with the standard 1st-order transport equation

�𝜴𝜴 ⋅ �𝜵𝜵𝝍𝝍(�𝒓𝒓, �𝜴𝜴) + 𝝈𝝈𝒕𝒕(�𝒓𝒓)𝝍𝝍(�𝒓𝒓, �𝜴𝜴) = 𝑸𝑸(�𝒓𝒓)

2. Multiply the equation with 𝝈𝝈𝒕𝒕(�𝒓𝒓) and arrive at an equation 
𝝈𝝈𝒕𝒕(�𝒓𝒓)�𝜴𝜴 ⋅ �𝜵𝜵𝝍𝝍(�𝒓𝒓, �𝜴𝜴) + 𝝈𝝈𝒕𝒕𝟐𝟐(�𝒓𝒓)𝝍𝝍(�𝒓𝒓, �𝜴𝜴) = 𝝈𝝈𝒕𝒕(�𝒓𝒓)𝑸𝑸(�𝒓𝒓)

3. Notice the following identity
𝝈𝝈𝒕𝒕 �𝒓𝒓 �𝜴𝜴 ⋅ �𝜵𝜵𝝍𝝍 �𝒓𝒓, �𝜴𝜴 = �𝜴𝜴 ⋅ �𝜵𝜵 𝝈𝝈𝒕𝒕 �𝒓𝒓 𝝍𝝍 �𝒓𝒓, �𝜴𝜴 −𝝍𝝍 �𝒓𝒓, �𝜴𝜴 �𝜴𝜴 ⋅ �𝜵𝜵𝝈𝝈𝒕𝒕 �𝒓𝒓

4. Re-write the equation in step 2
�𝜴𝜴 ⋅ �𝜵𝜵 𝝈𝝈𝒕𝒕 �𝒓𝒓 𝝍𝝍 �𝒓𝒓, �𝜴𝜴 + 𝝈𝝈𝒕𝒕𝟐𝟐 �𝒓𝒓 − �𝜴𝜴 ⋅ �𝜵𝜵𝝈𝝈𝒕𝒕 �𝒓𝒓 𝝍𝝍(�𝒓𝒓, �𝜴𝜴) = 𝝈𝝈𝒕𝒕(�𝒓𝒓)𝑸𝑸(�𝒓𝒓)

5. Re-write the original 1st-order transport equation in the following form
𝝈𝝈𝒕𝒕 �𝒓𝒓 𝝍𝝍 �𝒓𝒓, �𝜴𝜴 = 𝑸𝑸 �𝒓𝒓 − �𝜴𝜴 ⋅ �𝜵𝜵𝝍𝝍 �𝒓𝒓, �𝜴𝜴

6. Substitute the 𝝈𝝈𝒕𝒕 �𝒓𝒓 𝝍𝝍(�𝒓𝒓, �𝜴𝜴) back to the ‘modified’ steaming term in the equation in step 4, 
−�𝜴𝜴 ⋅ �𝜵𝜵 �𝜴𝜴 ⋅ �𝜵𝜵𝝍𝝍 �𝒓𝒓, �𝜴𝜴 + 𝝈𝝈𝒕𝒕𝟐𝟐 �𝒓𝒓 − �𝜴𝜴 ⋅ �𝜵𝜵𝝈𝝈𝒕𝒕 �𝒓𝒓 𝝍𝝍 �𝒓𝒓, �𝜴𝜴 = 𝝈𝝈𝒕𝒕(�𝒓𝒓)𝑸𝑸 �𝒓𝒓 − �𝜴𝜴 ⋅ �𝛁𝛁 )𝑸𝑸(�𝒓𝒓 .



The SAAF vs. Modified SAAF Equation

• The standard SAAF equation
−�𝜴𝜴 ⋅ �𝛁𝛁 𝟏𝟏

)𝝈𝝈𝒕𝒕(�𝒓𝒓
)�𝜴𝜴 ⋅ �𝛁𝛁𝝍𝝍(�𝒓𝒓, �𝜴𝜴 + 𝝈𝝈𝒕𝒕 �𝒓𝒓 𝝍𝝍 �𝒓𝒓, �𝜴𝜴 = 𝑸𝑸 �𝒓𝒓 − �𝜴𝜴 ⋅ �𝛁𝛁 )𝑸𝑸(�𝒓𝒓

)𝝈𝝈𝒕𝒕(�𝒓𝒓
,

• The modified SAAF equation
−�𝜴𝜴 ⋅ �𝜵𝜵 �𝜴𝜴 ⋅ �𝜵𝜵𝝍𝝍 �𝒓𝒓, �𝜴𝜴 + 𝝈𝝈𝒕𝒕𝟐𝟐 �𝒓𝒓 − �𝜴𝜴 ⋅ �𝜵𝜵𝝈𝝈𝒕𝒕 �𝒓𝒓 𝝍𝝍 �𝒓𝒓, �𝜴𝜴 = 𝝈𝝈𝒕𝒕(�𝒓𝒓)𝑸𝑸 �𝒓𝒓 − �𝜴𝜴 ⋅ �𝛁𝛁 )𝑸𝑸(�𝒓𝒓 .

• Features of the modified form:
– Self-Adjoint (?)
– Conservative (?)



Numerical Methods (SN)
• Consider the one-group one-dimension slab case

−𝝁𝝁𝟐𝟐
𝝏𝝏𝟐𝟐

𝝏𝝏𝒙𝒙𝟐𝟐
𝝍𝝍(𝒙𝒙,𝝁𝝁) + 𝝈𝝈𝒕𝒕𝟐𝟐(𝒙𝒙) − 𝝁𝝁

𝒅𝒅
𝒅𝒅𝒙𝒙

𝝈𝝈𝒕𝒕(𝒙𝒙) 𝝍𝝍(𝒙𝒙,𝝁𝝁) = 𝝈𝝈𝒕𝒕(𝒙𝒙)𝑸𝑸(𝒙𝒙) − 𝝁𝝁
𝒅𝒅
𝒅𝒅𝒙𝒙

𝑸𝑸(𝒙𝒙)

• The discrete-ordinate form (i.e., SN) of the equation

−𝝁𝝁𝒎𝒎𝟐𝟐
𝝏𝝏𝟐𝟐

𝝏𝝏𝒙𝒙𝟐𝟐
𝝍𝝍𝒎𝒎(𝒙𝒙,𝝁𝝁) + 𝝈𝝈𝒕𝒕𝟐𝟐(𝒙𝒙) − 𝝁𝝁𝒎𝒎

𝒅𝒅
𝒅𝒅𝒙𝒙

𝝈𝝈𝒕𝒕(𝒙𝒙) 𝝍𝝍𝒎𝒎(𝒙𝒙,𝝁𝝁) = 𝝈𝝈𝒕𝒕(𝒙𝒙)𝑸𝑸(𝒙𝒙) − 𝝁𝝁𝒎𝒎
𝒅𝒅
𝒅𝒅𝒙𝒙

𝑸𝑸(𝒙𝒙)

• Boundary conditions

𝝍𝝍𝒎𝒎,𝑳𝑳 𝒙𝒙 �𝟏𝟏 𝟐𝟐
= �

𝒇𝒇𝒎𝒎𝑳𝑳 𝝁𝝁𝒎𝒎>0
𝝍𝝍𝒎𝒎 𝒙𝒙 �𝟏𝟏 𝟐𝟐

𝝁𝝁𝒎𝒎 < 𝟎𝟎 , 𝝍𝝍𝒎𝒎,𝑹𝑹 = �
𝝍𝝍𝒎𝒎 𝒙𝒙𝑵𝑵+ �𝟏𝟏 𝟐𝟐

𝝁𝝁𝒎𝒎>0
𝒇𝒇𝒎𝒎𝑹𝑹 𝝁𝝁𝒎𝒎 < 𝟎𝟎

.

1
2N +1

2i −1
2

3
2

5
2

1
2i + 1

2N −

1i−∆
i∆1∆ 2∆ N∆1i+∆

3
2i − 3

2i +



Numerical Methods (CFEM)
• Start with the weak form of the modified SAAF equation
• Approximate the solution of the equation by a linear combination of 

trial functions
• Multiply the equation with weight functions, and apply the weighted 

residual method to get the desired numerical schemes
• Choose the weight function as the same function space of the trial 

functions (Standard Galerkin Method)

1
2i − 1

2i +

1i−∆ i∆

3
2i − i1i − 1i +

1i+∆

3
2i +

( )ib x 1( )ib x+1( )ib x−
1( )b x

1
2

3
2

1∆

1

1( )Nb x+

1
2N − 1

2N +

N∆

N



Numerical Schemes of the Standard LCFEM
• The equation for the cell-edge angular flux in the internal cells

𝑨𝑨𝒊𝒊,𝒊𝒊−𝟏𝟏𝝍𝝍𝒊𝒊−𝟏𝟏𝟐𝟐
+ 𝑨𝑨𝒊𝒊,𝒊𝒊𝝍𝝍𝒎𝒎,𝒊𝒊+𝟏𝟏𝟐𝟐

+ 𝑨𝑨𝒊𝒊,𝒊𝒊+𝟏𝟏𝝍𝝍𝒎𝒎,𝒊𝒊+𝟑𝟑𝟐𝟐
= 𝝈𝝈

𝒕𝒕,𝒊𝒊+𝟏𝟏𝟐𝟐
𝑸𝑸
𝒊𝒊+𝟏𝟏𝟐𝟐

𝜟𝜟𝒙𝒙
𝒊𝒊+𝟏𝟏𝟐𝟐

− 𝝁𝝁𝒎𝒎 𝑸𝑸𝒊𝒊+𝟏𝟏 − 𝑸𝑸𝒊𝒊

where 𝐴𝐴𝑖𝑖,𝑖𝑖−1 = − 𝜇𝜇𝑚𝑚2

𝛥𝛥𝑥𝑥𝑖𝑖
+ 1

6
𝜎𝜎𝑡𝑡,𝑖𝑖
2 𝛥𝛥𝑥𝑥𝑖𝑖 , 𝐴𝐴𝑖𝑖,𝑖𝑖 = 𝜇𝜇𝑚𝑚2

𝛥𝛥𝑥𝑥𝑖𝑖+1
+ 𝜇𝜇𝑚𝑚2

𝛥𝛥𝑥𝑥𝑖𝑖
+ 1

3
𝜎𝜎𝑡𝑡,𝑖𝑖
2 𝛥𝛥𝑥𝑥𝑖𝑖 + 𝜎𝜎𝑡𝑡,𝑖𝑖+1

2 𝛥𝛥𝑥𝑥𝑖𝑖+1 − 𝜇𝜇𝑚𝑚 𝜎𝜎𝑡𝑡,𝑖𝑖+1 − 𝜎𝜎𝑡𝑡,𝑖𝑖 , 𝐴𝐴𝑖𝑖,𝑖𝑖+1 = − 𝜇𝜇𝑚𝑚2

𝛥𝛥𝑥𝑥𝑖𝑖+1
+ 1

6
𝜎𝜎𝑡𝑡,𝑖𝑖+1
2 𝛥𝛥𝑥𝑥𝑖𝑖+1.

• The equation for 𝝍𝝍𝒎𝒎,𝟏𝟏𝟐𝟐
In the most left cell

𝑨𝑨𝟎𝟎,𝟎𝟎𝝍𝝍𝒎𝒎,𝟏𝟏𝟐𝟐
+ 𝑨𝑨𝟎𝟎,𝟏𝟏𝝍𝝍𝒎𝒎,𝟑𝟑𝟐𝟐

− 𝝁𝝁𝒎𝒎𝝈𝝈𝒕𝒕,𝟏𝟏𝝍𝝍𝒎𝒎,𝑳𝑳 = 𝝈𝝈𝒕𝒕,𝟏𝟏𝑸𝑸𝟏𝟏
𝜟𝜟𝒙𝒙𝟏𝟏
𝟐𝟐 − 𝝁𝝁𝒎𝒎𝑸𝑸𝟏𝟏

where       𝐴𝐴0,0 = 𝜇𝜇𝑚𝑚2

𝛥𝛥𝑥𝑥1
+ 1

2
𝜎𝜎𝑡𝑡,1
2 𝛥𝛥𝑥𝑥1, 𝐴𝐴0,1 = − 𝜇𝜇𝑚𝑚2

𝛥𝛥𝑥𝑥1
.

• The equation for 𝝍𝝍𝒎𝒎,𝑰𝑰+𝟏𝟏𝟐𝟐
In the most right cell

𝑨𝑨𝑰𝑰,𝑰𝑰−𝟏𝟏𝝍𝝍𝒎𝒎,𝑰𝑰−𝟏𝟏𝟐𝟐
+ 𝑨𝑨𝑰𝑰,𝑰𝑰𝝍𝝍𝒎𝒎,𝑰𝑰+𝟏𝟏𝟐𝟐

+ 𝝁𝝁𝒎𝒎𝝈𝝈𝒕𝒕,𝑰𝑰𝝍𝝍𝒎𝒎,𝑹𝑹 = 𝝈𝝈𝒕𝒕,𝑰𝑰𝑸𝑸𝑰𝑰
𝜟𝜟𝒙𝒙𝑰𝑰
𝟐𝟐 + 𝝁𝝁𝒎𝒎𝑸𝑸𝑰𝑰

where       𝐴𝐴𝐼𝐼,𝐼𝐼−1 = − 𝜇𝜇𝑚𝑚2

𝛥𝛥𝑥𝑥𝐼𝐼
, 𝐴𝐴𝐼𝐼,𝐼𝐼 = 𝜇𝜇𝑚𝑚2

𝛥𝛥𝑥𝑥𝐼𝐼
+ 1

2
𝜎𝜎𝑡𝑡,𝐼𝐼
2 𝛥𝛥𝑥𝑥𝐼𝐼



Nested Iterative Hierarchy for SN Transport Solver

Start of program
Begin of the power iteration (PI)

Loop on the energy group g
Begin of source iteration (SI)

Transport sweep (loop on each direction and each spatial variable)
DSA acceleration if needed
Check SI convergence to decide exit or update and continue

End of SI 
End of the energy group loop
Check PI convergence to decide exit or update and continue

End of the PI
End of program

SAAF or modified SAAF 
calculations



Numerical Example I

• Problem one: a three-region source problem.

• Reflecting B.C. on the left and Vacuum B.C. on the right side

Region 1 Region 2 Region 3
S [cm-1s-1] 1 0 0

𝜎𝜎𝑡𝑡 [cm-1] 0.5 0 0.8

𝜎𝜎𝒔𝒔 [cm-1] 0 0 0

x [cm] 0 ≤ 𝑥𝑥 < 2.5 2.5 ≤ 𝑥𝑥 < 7.5 7.5 ≤ 𝑥𝑥 ≤ 10



Results of the Problem One
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Numerical Examples II

• Problem Two: a five-region source problem.

• Reflecting B.C. on the left and Vacuum B.C. on the right side

Region 1 Region 2 Region 3 Region 4 Region 5
S [cm-1s-1] 100 0 0 0 1
𝜎𝜎𝑡𝑡 [cm-1] 100 0 1 5 1
𝜎𝜎𝒔𝒔 [cm-1] 0 0 0.9 0 0.9

x [cm] 0 ≤ 𝑥𝑥 < 2 2 ≤ 𝑥𝑥 < 4 4 ≤ 𝑥𝑥 ≤6 6 ≤ 𝑥𝑥 ≤ 7 7 ≤ 𝑥𝑥 ≤ 8

Ref.: Reed, “New Difference Schemes for the Neutron Transport Equation,” NSE, 1971.



Results of the Problem Two

Scalar flux distribution.
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The Least-Squares form Transport Equation
• Start with the standard 1st-order transport equation

𝑳𝑳𝝍𝝍 = �𝜴𝜴 ⋅ �𝜵𝜵𝝍𝝍(�𝒓𝒓, �𝜴𝜴) + 𝝈𝝈𝒕𝒕(�𝒓𝒓)𝝍𝝍(�𝒓𝒓, �𝜴𝜴) = 𝑸𝑸(�𝒓𝒓) , where 𝑳𝑳 = �𝜴𝜴 ⋅ �𝜵𝜵 + 𝝈𝝈𝒕𝒕(�𝒓𝒓) is the transport operator.

• The adjoint operator of the transport operator is
𝑳𝑳 += −�𝜴𝜴 ⋅ �𝜵𝜵 + 𝝈𝝈𝒕𝒕(�𝒓𝒓)

• Perform the adjoint operator on the 1st-order transport equation
−�𝜴𝜴 ⋅ �𝜵𝜵 + 𝝈𝝈𝒕𝒕(�𝒓𝒓) �𝜴𝜴 ⋅ �𝜵𝜵𝝍𝝍(�𝒓𝒓, �𝜴𝜴) + 𝝈𝝈𝒕𝒕(�𝒓𝒓)𝝍𝝍(�𝒓𝒓, �𝜴𝜴) = −�𝜴𝜴 ⋅ �𝜵𝜵 + 𝝈𝝈𝒕𝒕(�𝒓𝒓) 𝑸𝑸(�𝒓𝒓)

• With some manipulation on the resulted equation, one will arrive at
−�𝜴𝜴 ⋅ �𝜵𝜵 �𝜴𝜴 ⋅ �𝜵𝜵𝝍𝝍 �𝒓𝒓, �𝜴𝜴 + 𝝈𝝈𝒕𝒕𝟐𝟐 �𝒓𝒓 − �𝜴𝜴 ⋅ �𝜵𝜵𝝈𝝈𝒕𝒕 �𝒓𝒓 𝝍𝝍 �𝒓𝒓, �𝜴𝜴 = 𝝈𝝈𝒕𝒕(�𝒓𝒓)𝑸𝑸 �𝒓𝒓 − �𝜴𝜴 ⋅ �𝛁𝛁 )𝑸𝑸(�𝒓𝒓 .

This is exactly identical to our modified form of the SAAF equation!

Ref.: Hansen et al, “A Least Squares Transport Equation Compatible with Voids,” JCTT, 2014.



How Least-Squares Transport Equation Come?
• Based on the variational principle:

Define a least squares form of functional as follows:
𝒇𝒇 𝝍𝝍 = 𝑳𝑳𝝍𝝍 − 𝑸𝑸,𝑳𝑳𝝍𝝍 − 𝑸𝑸 ,

Find a solution 𝝍𝝍 that minimizes the functional. This solution is called a L-S solution.
𝒇𝒇 𝝍𝝍 = 𝑳𝑳𝝍𝝍 − 𝑸𝑸,𝑳𝑳𝝍𝝍 − 𝑸𝑸

= 𝑳𝑳𝝍𝝍,𝑳𝑳𝝍𝝍 − 𝟐𝟐 𝑳𝑳𝝍𝝍,𝑸𝑸 + 𝑸𝑸,𝑸𝑸
= 𝑳𝑳 + 𝑳𝑳𝝍𝝍,𝝍𝝍 − 𝟐𝟐 𝑳𝑳 + 𝑸𝑸,𝝍𝝍 + 𝑸𝑸,𝑸𝑸

• To find a minimum value, it is required to  𝒅𝒅𝒇𝒇 𝝍𝝍
𝒅𝒅𝝍𝝍

= 𝟎𝟎.

• Performing the derivative will yield the least-squares transport equation

𝑳𝑳 + 𝑳𝑳𝝍𝝍 − 𝑳𝑳 + 𝑸𝑸 = 𝟎𝟎.

• Least-squares form transport is not unique, it is determined by the original functional.



Distinction of Our Derivation 

• Straightforward goal-oriented derivation procedure
• Purely algebraic derivation technique, no any fancy math 

involved
• Build a bridge connecting the SAAF equation and the Least-

squares equation 
• The ideas behind our derivation is easily extended to other 

equations with similar situations



Possibly Extension of Our Derivation Approach

• Diffusion equation can be derived from the P1 equations

�
𝜵𝜵 ⋅ 𝑱𝑱(�𝒓𝒓) + 𝝈𝝈𝒂𝒂(�𝒓𝒓)𝝓𝝓(�𝒓𝒓) = 𝑸𝑸(�𝒓𝒓)
𝟏𝟏
𝟑𝟑
𝜵𝜵𝝓𝝓 �𝒓𝒓 + 𝝈𝝈𝒕𝒕 �𝒓𝒓 𝑱𝑱 �𝒓𝒓 = 𝟎𝟎

• Standard diffusion equation
−𝜵𝜵 ⋅

𝟏𝟏
𝟑𝟑𝝈𝝈𝒕𝒕 �𝒓𝒓

𝜵𝜵𝝓𝝓 �𝒓𝒓 + 𝝈𝝈𝒂𝒂(�𝒓𝒓)𝝓𝝓(�𝒓𝒓) = 𝑸𝑸(�𝒓𝒓)

• Modified diffusion equation
𝟏𝟏
𝟑𝟑
𝜵𝜵 ⋅ 𝝈𝝈𝒕𝒕 �𝒓𝒓 𝜵𝜵𝝓𝝓 �𝒓𝒓 −

𝟐𝟐
𝟑𝟑
𝝈𝝈𝒕𝒕 �𝒓𝒓 𝜵𝜵 ⋅ 𝜵𝜵𝝓𝝓 �𝒓𝒓 + 𝝈𝝈𝒕𝒕𝟐𝟐 �𝒓𝒓 𝝈𝝈𝒂𝒂(�𝒓𝒓)𝝓𝝓(�𝒓𝒓) = 𝝈𝝈𝒕𝒕𝟐𝟐 �𝒓𝒓 𝑸𝑸(�𝒓𝒓)



Summary
• The SAAF equation is modified to be fully compatible with void 

problems.
• Advantages and disadvantages of the modified form of the SAAF 

equation are discussed
• Numerical results are presented to demonstrate the preliminary 

feasibility of the modified SAAF form applied in void problems
• Connection to the Least-squares form transport is introduced, 

some merits and future applications of our derivation are briefly 
discussed
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