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INTRODUCTION

The accuracy and reliability of the reactor safety 
analysis code are critical because the specifications of the 
safety systems will depend on the analytical results for 
initiating events that could occur to the reactor. In safety 
analyses for power reactors, there exist many proficient 
and applicable computer codes such as RELAP5, 
CATHARE, RETRAN, or CATHENA. For non-power 
research reactors, an issue arises, however, due to lacking 
of such specialized codes. As a result, computer codes 
developed for the transient analysis of power reactors need 
to be applied carefully after proving their applicability to a 
specified research reactor [1].

The safety analysis discussed in this paper concerns 
the prevention of fuel damage in hypothetical accidental 
scenarios for the new research reactor design at National 
Institute of Standards and Technology (NIST) [2, 3]. One 
fuel integrity criterion is analyzed by investigating the 
Minimum Critical Heat Flux Ratio (MCHFR) in the core
during the accidental transients. Some previous studies 
develop a relationship that correlates the nominal value of 
the minimum CHFR with the probability of CHF occurring 
and causing fuel damage [4]. Using a statistical approach, 
the nominal value of the MCHFR for the low-enriched 
uranium (LEU) reactor needs to remain above the 
recommended limiting value to better ensure the safety of 
the research reactor. Table I summaries the statistical 
analysis results of the MCHFR for a LEU fuel at multiple 
probability levels.

Table I� Statistical Analysis Results for LEU Fuel 

Probability Level MCHFR

90.0% 1.301

95.0% 1.391

99.9% 1.778

As seen in Table 1, the probability of no fuel failure 
increases as the MCHFR increases. More importantly, as 
long as the MCHFR remains above the recommended 
limiting value of 1.301, the reactor will have a 90%
probability that CHF is not reached [4].

The safety analysis program PARET [5], developed by 
Argonne National Laboratory (ANL), is employed to 

obtain the CHFR information in this study. PARET/ANL 
is a digital computer programming code intended primarily 
for the analysis of test and research reactors that use plate-
type (flat) fuel elements. This program has its own set of 
correlations that are used to calculate the CHFR. One of 
them is the Mirshak correlation [6], which was believed to 
provide the best estimation of the critical heat flux under 
the operating conditions of the new reactor at the time [7].

Following the critical heat flux (CHF) experiments for 
vertical rectangular channels in the JRR-3 (Japan Research 
Reactor unit 3), the CHF calculations now use the Sudo-
Kaminaga correlation [8]. This correlation is of our interest
because this method has an enhanced geometric similarity 
and an increased range of applicability that are more 
representative of the actual operating conditions of our 
current design, and has a more mechanistic approach [9]. 
Since the source code of PARET/ANL is inaccessible, a 
MATLAB-based utility has been written to integrate the 
Sudo-Kaminaga correlation as a substitute for the Mirshak 
correlation in the code. As a result, both the Mirshak and 
the Sudo-Kaminaga correlations are used to analyze the
standard output from the PARET program to calculate the 
CHFR.

INTEGRATION OF THE CORRELATION

The PARET output file provided the raw data 
necessary to perform the CHFR calculations using the 
Sudo-Kaminaga correlation. A sequence of coding 
modules was made within MATLAB in order to perform
data extraction and manipulation, CHFR calculations, and 
analysis, to yield the desired results. These modules can be 
summarized into the following three steps.

The first step is to import the data from the 
PARET/ANL output file, which was essential in the 
implementation of the safety analysis. The modules of data 
extraction and manipulation are standardized for a general 
application. The differences, however, that need to be 
taken into account are the type of file, the format within the 
file, and differentiating between the important and 
irrelevant data for the purposes of the analysis. 

After the necessary data from the output file has been 
obtained, the second step is to calculate the CHFR for every 
node and time step, which requires a loop procedure and 
modules to generate a matrix after calculating all of the
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CHFR values. The coding efforts in this step is comparable 
to that in first step regarding its overall functionality. They 
both follow a loop and generate an array to organize the 
necessary information. The uniqueness in this part is that 
instead of searching for keywords, it defines and redefines 
the node and time step throughout the loop while applying 
the calculations for the CHFR with the appropriate 
correlations. It is worthy to mention that there are multiple 
existing correlations that can be used to find the CHFR 
values. The ones involved in this analysis are the Mirshak 
correlation and the Sudo-Kaminaga correlation.

The Mirshak correlation is an equation designed 
calculate the CHFR in research reactors with plate-type 
fuels. For this correlation, the CHF is a function of the 
coolant temperature, equivalent diameter, coolant velocity, 
and pressure [7]. It was the original method used in the 
CHFR calculations for the reactor at NIST. It was also 
incorporated in the PARET/ANL program. The Sudo-
Kaminaga correlation is another method used to determine
the CHFR for vertical rectangular channels in a research 
reactor. The CHF experiments used to derive this 
correlation included the effects of pressure, inlet sub-
cooling, outlet sub-cooling, mass flux, flow direction, and 
channel configuration [9]. The correlations proposed by 
Sudo and Kaminaga are dependent on mass flux and flow 
direction and have three separate regions based on the 
dimensionless mass flux, G*, as shown in Fig. 1.

Fig. 1. Sudo-Kaminaga correlation scheme [9].

The module that calculates the CHFR with the Sudo-
Kaminaga correlation was designated as a function called 
CHF_SK(Nodenum,iteration). This user-defined function 
can be called upon as a single line in another module as 
long as the input values, Nodenum and iteration, were 
given. Within this module, the function ExtractData is
called upon in order to use the variable information that 

was extracted from the PARET output file. A calculation
loop is necessarily generated in order to systematically 
differentiate the nodes between the three to calculate the 
corresponding CHFR values.

In the last step, the axial dependent CHFR was
calculated via the Sudo-Kaminaga correlation and placed 
into a matrix, and compared with the CHFR value of the 
Mirshak correlation. The minimum values of the CHFR at 
each time step for both the Sudo-Kaminaga correlation and 
the Mirshak correlation were found. Moreover, the time 
steps in seconds needed to be homogenized so that each set 
of CHFR values could be consistently compared in a single 
plot figure. Afterward, the absolute minimum value and its 
occurring time were determined and recorded for future 
reference.

RESULTS

Safety analyses of two categories of hypothetical 
design basis accidents at the end of an equilibrium cycle 
were performed using PARET/ANL code, and the 
minimum CHFR during the abnormal operation transients 
based on Sudo-Kaminaga correlation were evaluated using 
the standard outputs of PARET and the utilities we 
developed. The results were compared to the values 
calculated by PARET based on Mirshak correlation. For 
the safety point view, the minimum CHFR is required to 
remain above the determined minimum CHFR for an LEU 
reactor shown in Table I according to its corresponding 
probability confidence level.

The first category of design basis accident is the 
reactivity insertion accident (RIA). Two cases are 
considered under this category. The first case (Case 1) is 
the small reactivity insertion case, in which the reactor is 
assumed to be initially critical and operating at a very low 
power (~ 0), while a positive reactivity is inserted to the 
core with a slow ramp rate $0.1/s. The second case (Case 
2) is the large reactivity insertion case, in which the reactor
is assumed to critical and operating at a full power, while a 
large reactivity $1.5 is inserted to the core within 0.5 s. In 
both cases, the reactor scram occurs when power exceeds
120% of normal operating power. For simplicity and 
conservatism, all reactivity feedbacks are neglected in the 
transient analyses.

The comparisons of the minimum CHFR calculated 
from Mirshak and Sudo-Kaminaga correlations for case 1
and case 2 are shown in Fig. 2 and Fig. 3, respectively. In 
Fig. 2, both correlations seem to have a nearly identical 
trend during the runtime in the small RIA. The only 
difference is that the estimation from Mirshak correlation 
(denoted by the color blue) is slightly smaller than the 
estimation from Sudo-Kaminaga correlation (denoted by 
the color red). The minimum CHFR value occurs about 11 
seconds into the accident. 
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Fig. 2. Variation of the minimum CHFR in the hot 
channel during a small RIA.

Fig. 3. Variation of the minimum CHFR during in the hot 
channel during a large RIA.

In Fig. 3, the curve for the minimum CHFR of the 
Sudo-Kaminaga correlation lies below the other curve in 
the beginning, but slowly rises above the curve of the 
Mirshak correlation during the rest of the event. Fig. 3 also 
indicates that the minimum CHFR occurs at the beginning 
of the transient in this case.

The second category of design basis accident being 
studied is the loss of flow accident (LOFA), in which the 
reactor assumed to be initially operated at full power. At 
the onset of the accident, the flow decay occurs due to the 
pump coast down and modeled as an exponential decrease 
with a time period T. There are also two cases are 
considered in this category: the slow LOFA (Case 3) and 
the fast LOFA (Case 4) with the T respectively assumed to 
be 25 s and 1 s. In both cases, the reactor scram occurs 
when the flow decay is reduced by 15%. The comparisons 
of the minimum CHFR calculated from Mirshak and Sudo-

Kaminaga correlations for Case 3 and Case 4 are shown in 
Fig. 4 and Fig. 5, respectively.

Fig. 4. Variation of the minimum CHFR for SLOFA.

In Fig. 4, the curve for the Sudo-Kaminaga correlation 
remains above the curve of the Mirshak correlation until 
about 60 seconds. At this point, the minimum CHFR for 
the Sudo-Kaminaga drops below the Mirshak curve 
through to the conclusion of the runtime. There is a greater 
chance for CHF to occur at about 4 seconds into case 3 
because that is where the minimum CHFR is at its lowest.

Fig. 5. Variation of the minimum CHFR for FLOFA.

In Fig. 5, the curve of the Sudo-Kaminaga correlation
drops below the other curve at an earlier time compared to 
the other cases. The trend of the red curve (Sudo-Kaminaga 
correlation) differs from the shape of the blue curve 
(Mirshak correlation) unlike in the other cases. CHF is 
more likely to occur at the beginning of case 4 than 
anywhere else because that is where the minimum CHFR 
value is at its lowest.
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The assessment of the probability of the critical heat 
flux will be reached is determined by observing the lowest 
CHFR values throughout each case. Table II summarizes 
the specific values of the minimum CHFR for both 
correlations and the time for which they occur during the 
simulation for the tested accident cases.

Table II. Minimum CHFR for Each Tested Correlation

Sudo-Kaminaga Mirshak
Case # MCHFR Time(s) MCHFR Time(s)

1 2.81 11.55 2.17 11.57

2 3.29 0.10 2.50 0.14

3 3.63 4.00 2.99 4.28

4 3.85 0.01 2.80 0.38

As seen in Table II, the minimum CHFR of both 
correlations are comparable in regard to these analyzed 
accident cases. The results show that the minimum CHFR 
values for the Sudo-Kaminaga correlation were marginally 
higher than for the Mirshak correlation in all four cases. 
However, for all cases, the times when the minimum 
CHFR value occurred for both correlations were within 0.5 
seconds of each other. All CHFR values are above 1.778, 
so there is at least a 99.9% chance that there will be no fuel 
failure (see Table I) during these four accident cases.

CONCLUSION

The results predicted by the Sudo-Kaminaga 
correlation has slightly larger margins than those by the 
Mirshak correlation for all the tested cases most of the time.
For the RIA cases, the curve for the Sudo-Kaminaga 
correlation is slightly above the curve for the Mirshak 
correlation. For the LOFA cases, the Sudo-Kaminaga 
correlation starts off being above the other curve until it 
drops downward and remains below the Mirshak curve 
until the end of the runtime. The minimum CHFR, as 
calculated from the Sudo-Kaminaga correlation, is clearly
above the recommended minimum CHFR for a low-
enriched uranium (1.301) at all times, therefore, indicating 

that the fuel in the reactor will be virtually guaranteed (at 
least 99.9%) to not reach CHF. In short, the Sudo-
Kaminaga correlation supports that the fuel in the reactor 
is thermal-hydraulically within safety limits and provides 
enough margin of safety while having a more compatible
geometry compared to the Mirshak correlation.
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